UNCLASSIFIED AD 419306

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CALCULATION OF HIGH-ENERGY SECONDARY ELECTRON EMISSION

by

Jerry A. Sawyer Lt USAF 64-5-

August 1963

TECHNICAL DOCUMENTARY REPORT NUMBER AFSWC-TDR-63-50

Research Directorate
AIR FORCE SPECIAL WEAPONS CENTER
Air Force Systems Command
Kirtland Air Force Base
New Mexico

Project No. 8812

419306

HEADQUARTERS AIR FORCE SPECIAL WEAPONS CENTER Air Force Systems Command Kirtland Air Force Base New Mexico

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. In case of apparent conflict between the Government's proprietary interests and those of others, notify the Staff Judge Advocate, Air Force Systems Command, Andrews AF Base, Washington 25, DC.

This report is published for the exchange and stimulation of ideas; it does not necessarily express the intent or policy of any higher headquarters.

Qualified requesters may obtain copies of this report from DDC.

Orders will be expedited if placed through the librarian or other staff member designated to request and receive documents from DDC.

FOREWORD

The author takes this opportunity to acknowledge the aid and support given by James W. Garner of the mathematics group at AFWL. He is responsible for writing and executing all three programs on the CDC 1604 computer, and for other valuable suggestions made during this work. Also appreciated are the helpful remarks by Dr. Victor A. J. van Lint, General Atomic, San Diego, California. It is hereby acknowledged that the original concept for this study came from him through AFSWC TDR-62-63.

ABSTRACT

Thin targets of low atomic number were assumed to be bombarded with 25-Mev electrons, 600-kv X rays and prompt fission gamma radiation. The resulting high-energy secondary electrons were calculated theoretically on a high-speed digital computer with respect to their intensity, energy losses, energy spectra and angle of emission spectra. The results show that 25-Mev electrons, 600-kv X rays and prompt fission gamma radiation produce a maximum efficiency of high-energy secondary-electron emission of 8.0, 0.05, and 0.3 percent, respectively. Experimental results from 25-Mev electron irradiations agree very closely with these theoretical numbers. An experiment is planned for the 600-kv X-ray radiation source.

PUBLICATION REVIEW

This report has been reviewed and is approved.

Jerry A. Saurjer Jerry A. Sawyer

Lt USAF Project Officer

Colonel USAF

Chief, Physics Branch

Research Division

CONTENTS

	Page
Introduction	1
Secondary Electron Emission by Prompt Fission Gamma Radiation	1
Secondary Electron Emission by 25-Mev Electrons	60
Secondary Electron Emission by a 600-kv Pulsed X-ray Source	96
Assumptions and Percent Errors	110
Results	111
Conclusions and Recommendations	113
Appendix A Prompt Fission Gamma Program	115
B 25-Mev Electron Program	. 129
C 600-kv X-ray Program	149
Bibliography	159
Distribution	161

ILLUSTRATIONS

Figure		Page
2. 1	Relative importance of the three major types of gamma-ray interactions. The lines show the values of Z and hv for which the two neighboring effects are just equal.	33
2. 2	Trajectories in the scattering plane for the incident photon $h\nu_0$, the scattered photon $h\nu$, and the scattered electron which acquires momentum ρ and kinetic energy T .	34
2.3	A thin absorbing sample	35
2.4	The number-distance curve for an electron with energy E, i.e., monoenergetic particles.	36
2.5	Empirical range-energy relationship for electrons absorbed in aluminum with data points shown.	37
2.6	Experimentally measured absorption curves for monochromatic electrons in aluminum.	38
2.7	Gamma flux to give 1 roentgen/hour.	39
2.8	Energy spectrum of prompt fission gamma rays from U^{235} fission for times less than 5 x 10^{-8} seconds.	. 40
2.9	A typical sample division.	41
2.10	Diagram of the probability of escape P_e .	42
2,11	Diagram for the calculation of the energy of escape $\mathbf{E}_{\mathbf{e}}$.	43
2. 12	The number of secondaries escaping S as a function of thickness for prompt fission gamma radiation.	44
2, 13	The number of secondaries deposited S _d as a function of thickness for prompt fission gamma radiation.	45
2.14	The energy of escape per unit path length as a function of thickness for prompt fission gamma	46

ILLUSTRATIONS (cont'd)

Figure		Page
2. 15	The energy deposited per unit path length as a function of thickness for prompt fission gamma radiation.	47
2.16	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.01 gm/cm ² ($\triangle E = 0.1 \text{ MeV}$; $\triangle \theta = 2^{\circ}$).	48
2.17	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.025 gm/cm ² .	49
2.18	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.05 gm/cm^2 .	50
2. 19	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.10 gm/cm ² .	51
2. 20	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness of 0.25 gm/cm ² .	52
2.21	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.50 gm/cm ² .	53
2. 22	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.75 gm/cm ² .	54
2, 23	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 1.0 gm/cm ² .	55
2, 24	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 2,5 gm/cm ² .	56
2, 25	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 5.0 gm/cm ² .	57
2, 26	Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 10 gm/cm ² .	58

ILLUSTRATIONS (cont'd)

Figure		Page
2, 27	Energy spectra for prompt fission gamma radiation for thicknesses in the range from 0.01 to 10 gm/cm ² .	59
3.1	Trajectories in the scattering plane for the incident electron E_0 , the scattered electron E^{\dagger} , and the secondary electron E . The momentum is represented by ρ .	78
3.2	Energy groups for the 25-Mev electron program.	79
3. 3	The number of secondaries escaping S_{e} as a function of thickness for 25-Mev electrons.	80
3, 4	The number of secondaries deposited S_d as a function of thickness for 25-Mev electrons.	81
3.5	The energy of escape per unit path length as a function of thickness for 25-Mev electrons.	82
3.6	The energy deposited per unit path length as a function of thickness for 25-Mev electrons.	83
3, 7	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness $0.01~\mathrm{gm/cm^2}$.	84
3, 8	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.025 $\mathrm{gm/cm^2}$.	85
3. 9	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.05 gm/cm ² .	86
3.10	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.10 gm/cm ² .	87
3, 11	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness $0.25~\rm gm/cm^2$.	88
3, 12	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.50 gm/cm ² .	89

ILLUSTRATIONS (cont'd)

Figure		Page
3, 13	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.75 gm/cm ² .	90
3, 14	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 1.0 gm/cm ² .	91
3, 15	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 2,5 gm/cm ² .	92
3, 16	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 5,0 gm/cm ² .	93
3, 17	Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 10 gm/cm ² ,	94
3, 18	Energy spectra for 25-Mev electrons for thicknesses in the range from 0.01 to 10 gm/cm 2 .	95
4, 1	Energy spectrum from 600-kv flash X-ray machine as a function of photon energy.	103
4, 2	The number of secondaries escaping S_e as a function of thickness for 600-kv X rays.	104
4, 3	The number of secondaries deposited S_d as a function of thickness for 600-kv $ X $ rays.	105
4. 4	The energy of escape per unit path length as a function of thickness for 600-kv X rays.	106
4, 5	The energy deposited per unit path length as a function of thickness for 600-kv X rays.	107
4.6	Energy spectra for 600-kv X rays for thicknesses in the range from 0.01 to 10 gm/cm ² .	108
4.7	Angle of emission spectrum for 600-kv X rays. The numbers 10, 5, 2,5 etc., are thick- nesses in gm/cm ² .	109

TABLES

No.		Page No.
2.1	Number of Gamma Rays per Fission as a Function of Incident Gamma Energy	25
2.2	Parameters for Sample Problem	26
2.3	Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for Prompt Fission Gamma Radiation	27
2.4	Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for Prompt Fission Gamma Radiation	28
2,5	Number of Secondaries which Escape as a Function of Angle and Thickness for Prompt Fission Gamma Radiation	31
3.1	Critical Energy E and the Ratio of the Radiative Loss to the Ionization Loss for Various Materials	71
3, 2	Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for 25-Mev Electron	72
3. 3	Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for 25-Mev Electrons	73
3. 4	Number of Secondaries which Escape as a Function of Angle and Thickness for 25-Mev Electrons	76
4, 1	Energy Groups and Weighting Factors for 600-kv X-rays	98
4. 2	Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for 600-kv X-rays	99
4. 3	Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for 600-kv X-rays	100
4, 4	Number of Secondaries which Escape as a Function of Angle and Thickness for 600-kv X-rays	101
6.1	Summary	112

SYMBOLS

Symbol	<u>Definition</u>
h	Planck's constant (6,6252 x 10^{-27} erg · sec).
٧٥	Frequency of the incident prompt fission gamma ray.
c	Speed of light (2.998 x 10^{10} cm/sec).
v	Frequency of the scattered photon.
Φ	Angle between the direction of the incident photon and the direction of the scattered photon.
θ	Angle between the direction of the incident photon and the direction of the Compton electron.
P	Momentum of the Compton electron.
T	Kinetic energy of the Compton electron.
m _o	Rest mass of an electron (9.11 \times 10 ⁻²⁸ gm).
m _o c ²	Rest mass energy of an electron (0.51098 Mev).
α	The incident photon energy over the rest mass energy
	of the electron (hv_0/m_0c^2) .
đ	Average collision cross section for a Compton interaction in \mbox{cm}^2/\mbox{e} .
r _o	Classical radius of an electron (2, 818 x 10^{-13} cm).
³ S	Average scattered cross section for a Compton interaction in \mbox{cm}^2/\mbox{e} .
3 a	Average absorption cross section for a Compton interaction in $\mbox{cm}^2/\mbox{e},$
T _{AV}	Average energy of the recoil Compton electron.
[⊕] AV	Average angle the recoil electron scatters with respect to the direction of incident photon.
N _a	Avogadro's number (6.025 x 10 ²³ atom), mole
A	Atomic weight (gm/mole),
Z	Atomic number (number of electrons per atom).

SYMBOLS (cont'd)

Symbol	Definition
ΔR	A differential scattering element within a sample in gm/cm ² .
ⁿ o	Initial number of particles passing through a sample.
n	Number of particles escaping from the sample which did not have an interaction producing secondaries.
dn	Number of secondaries produced (n - n).
Eo	Initial energy of the incident particle (Mev).
T	Thickness of the sample in gm/cm ² .
P _e (E)	Intensity or probability of escape for an electron of energy E.
$P_{\mathbf{d}}(\mathbf{E})$	Probability of deposition for an electron of energy E.
R	The distance an electron traverses in gm/cm ² .
R	The average range of an electron with energy E in gm/cm^2 .
α	Range-straggling parameter. (The half-width of the Gaussian curve at $1/e$ of the maximum).
Ø	The standard deviation,
R _p	Practical range in gm/cm ² .
S(E)	The total number of secondaries born in some ΔR with energy E per incident particle.
S _e (E)	The total number of secondaries born in some $\triangle R$ with energy E which escape with energy E per incident particle.
$S_{\mathbf{d}}(\mathbf{E})$	The total number of secondaries born in some ΔR with energy E which are deposited per incident particle.
Sd	Total number of secondaries per incident particle summed on R and E .
E	Energy the secondary is born with in Mev.
E _e	Energy the secondary escapes with in Mev.
E	Energy lost from the sample in Mev.
E _d	Energy deposited in the sample in Mev.

SYMBOLS (cont'd)

<u>Symbol</u>	<u>Definition</u>
N _m	Number of gamma rays per fission in energy group m.
I	Intensity of the gamma beam as a function of distance.
Io	The initial intensity of the gamma beam.
$\frac{b}{h}$	Mass absorption in cm ² gm
A	Attenuation factor.
n	Subscript.
m	Subscript.
R _e	Distance in gm/cm² to one-half the probability of escape.
۵R _e	The range left over after the electron escapes.
E'	The energy of an incident electron after a collision.
9	Angle between the incident electron and the secondary electron,
Φ	Angle between the incident electron and the scattered incident electron.
d∘ (E _o , E)	Differential cross section which represents the probability at least one particle will have energy ${f E}$ after a collision with an electron of energy ${f E}_{f o}$.
c (E _o , E)	Total cross section and represents the probability that one of the electrons will have energy between E and E $_{\rm O}/2$ when colliding with an electron of energy E $_{\rm O}$.

1. INTRODUCTION.

a. Objectives

- (1) To aid in the simulation of the prompt fission gamma radiation field associated with a nuclear detonation by comparing the efficiencies of secondary-electron emission, energy spectra, angle-of-emission spectra, and energy losses for various laboratory radiation sources. Interest will be concentrated on 25-Mev electrons from a linear accelerator and a 600-ky pulsed X-ray source.
- (2) To establish computer programs which can be used in transient radiation effects (TREE) studies to simulate any desired radiation energy source.

b. Background

The basic parameters for work in transient radiation effects have not been determined satisfactorily. This study was necessary because in weapon effects work instrumentation may be exposed to radiation fields as high as 10^{12} r/sec. This extreme flux will cause electronic components to fail; therefore, the components must be tested beforehand in the laboratory to establish and possibly eliminate the effects expected in the nuclear environment. This work will permit the laboratory work to be done much more accurately.

2. SECONDARY ELECTRON EMISSION BY PROMPT FISSION GAMMA RADIATION.

a. General remarks

In this section a theoretical calculation is made of the energy spectra, the angle-of-emission spectra, the energy losses, and the efficiencies for secondary electrons emitted because of prompt fission gamma radiation. The calculation was done for low-Z materials with thicknesses

in the range from 0.01 to 10 gm/cm^2 . The Maienschein (1958) prompt fission gamma ray spectrum for U^{235} fissions was used during the time interval less than 5×10^{-8} second. The Klein-Nishina cross sections were used to evaluate the above parameters.

There are three ways in which a photon can interact with matter to lose its energy: interaction with an atom as a whole, interaction with a free electron, and interaction with the Coulomb field of the nucleus.

The interaction of a photon with an atom as a whole leads to the photoelectric effect. The importance of this effect in the field of high energies and low-Z materials is negligible, so that it need not be considered in detail. The interaction of a photon with a free electron leads to the Compton effect. In this phenomenon the photon transfers part of its energy and momentum to the electron initially at rest. The interaction of a photon with the Coulomb field of the nucleus leads to the phenomenon of pair production, whereby the photon disappears and a positive and a negative electron simultaneously come into existence. For this phenomenon to occur, the energy of the photon must exceed the rest energy of two electrons. The excess energy appears almost completely as kinetic energy of the two electrons, while the recoil of the nucleus accounts for the momentum balance. Pair production predominates in the high-Z, high-energy region, whereas the Compton effect predominates in the low-Z, intermediate-energy group (figure 2, 1) which is the region of interest in this report.

Both the Compton effect and pair production are typical quantum phenomena without a classical counterpart. Their description requires the use of quantum electrodynamics along with quantum mechanics.

b. Theory.

(1) Conservation laws for the Compton effect

As was stated above, the area of interest in this report is the area in figure 2.1 labeled the Compton effect.

In figure 2, 2, the incident photon is represented by an energy $h\nu_{a}$. The scattered photon is emitted at an agle ϕ with an energy $h\nu_{a}$ and

the electron recoils at an angle θ with a momentum p and a kinetic energy T. The relations for the conservation of momentum for this collision can now be written, remembering that the momentum of a photon is $\frac{h\nu}{c}$. Conservation of momentum in the direction of $h\nu$ is expressed by

$$\frac{hv_0}{c} = \frac{hv}{c} \cos \varphi + p \cos \theta \qquad (2.1)$$

while conservation of momentum normal to this direction gives

$$0 = \frac{hv}{c} \sin \varphi - p \sin^{12} \tag{2.2}$$

A third relation between these variables is obtained from the conservation of energy,

$$hv_0 = hv + T.$$
 (2.3)

Using the relativistic relationship

$$p c = \sqrt{T (T + 2 m_0 c^2)}$$
 (2.4)

and some algebra, one can eliminate any two parameters from these three equations. It should be noted that these equations represent only the fundamental conservation laws as applied to a two-body collision. They must, therefore, be obeyed regardless of the details of the interactions at the scene of the collision.

To describe the angular distribution of the Compton electrons

and to take into account the true distance they travel through the sample, it is necessary to derive by the proper combination of the four preceding equations the following equation for the energy of the Compton electron in terms of its scattering angle:

$$T = hv_0 \frac{2a \cos^2 \theta}{(1+a)^2 - a^2 \cos^2 \theta}$$
 (2.5)

where $a = hv_0/m_0c^2$. The details of this derivation can be found in the appendix of Semat (1958).

(2) Klein-Nishina cross sections

Because classical methods cannot cope with the general collision involving high-energy photons. Klein-Nishina successfully applied Dirac's relativistic theory of the electron to this problem and obtained a general solution which is in remarkable agreement with experiments.

The summation of the probabilities of all possible collisions between the incident photon and each free electron is generally the total collision cross section. Because it represents the integrated probability per electron that some scattering event will occur, it is physically clearer to speak of this integral as the average collision cross section of. The average collision cross section is the same for polarized or unpolarized incident radiation. By integrating the differential cross section over all permissible angles, one finds the following result:

$$d = 2 \pi r_0^2 \left\{ \frac{1+\alpha}{\alpha^2} \left[\frac{2(1+\alpha)}{1+2\alpha} + \frac{1}{\alpha} \ln(1+2\alpha) \right] + \frac{1}{2\alpha} \ln(1+2\alpha) - \frac{1+3\alpha}{(1+2\alpha)^2} \right\} cm^2/e$$
 (2.6)

where r is the classical electron radius.

Experimental interest often centers on the average properties of the scattered radiation; thus, the average scattered cross section of is

$$\sigma_{s} = \pi r_{o}^{2} \left[\frac{1}{\alpha^{3}} \ln (1 + 2\alpha) + \frac{2(1 + \alpha)(2\alpha^{2} - 2\alpha - 1)}{\alpha^{2}(1 + 2\alpha)^{2}} + \frac{8\alpha^{2}}{3(1 + 2\alpha)^{3}} \right] cm^{2}/e.$$
 (2.7)

The total cross section or average collision cross section is given by

$$d = d + d$$
 (2.8)

where of is the average absorption cross section. Thus,

$$\sigma_{\mathbf{g}} = \sigma - \sigma_{\mathbf{g}} \tag{2.9}$$

or

$$\sigma_{\mathbf{a}} = 2 \pi r_{\mathbf{o}}^{2} \left[\frac{2 (1 + \alpha)^{2}}{\alpha^{2} (1 + 2\alpha)} - \frac{1 + 3\alpha}{(1 + 2\alpha)^{2}} - \frac{(1 + \alpha) (2\alpha^{2} - 2\alpha - 1)}{\alpha^{2} (1 + 2\alpha)^{2}} - \frac{4\alpha^{2}}{3 (1 + 2\alpha)^{3}} - \left(\frac{1 + \alpha}{\alpha^{3}} - \frac{1}{2\alpha} + \frac{1}{2\alpha^{3}} \right) \right] \ln (1 + 2\alpha) \operatorname{cm}^{2} / e$$

$$(2.10)$$

From the conservation of energy, equation (2.3), each scattered photon hy has associated with it a recoil electron whose energy is

$$T = hv_0 - hv.$$
 (2.11)

Therefore, the average kinetic energy $T_{\mbox{AV}}$ of all recoil electrons from Compton interactions will be

$$T_{AV} = hv_{AV} - hv_{AV}. \qquad (2.12)$$

Hence

$$\frac{\mathbf{T}_{\mathbf{A}\mathbf{V}}}{\mathbf{h}\mathbf{v}} = 1 - \frac{\mathbf{h}\mathbf{v}_{\mathbf{A}\mathbf{V}}}{\mathbf{h}\mathbf{v}_{\mathbf{O}}} = 1 - \frac{\mathbf{\sigma}_{\mathbf{S}}}{\mathbf{\sigma}} = \frac{\mathbf{\sigma}_{\mathbf{S}}}{\mathbf{\sigma}}$$
 (2.13)

(Evans, 1955, p. 688).

An electron born with an average energy T_{AV} , scattered at an average angle θ_{AV} , and at a given distance R_n in the sample with respect to the escaping interface, has a true distance of $Rn/\cos\theta_{AV}$ to traverse before escaping from the sample. Therefore, to account for the angular distribution it is necessary to derive an expression for the $\cos\theta_{AV}$. By solving equation (2.5) explicitly for $\cos\theta$ and taking an average value for θ and T, one gets

$$\cos \theta_{AV} = \sqrt{\frac{T_{AV} (1 + \alpha)^2}{T_{AV} \alpha^2 + 2\alpha h \nu_o}}$$
 (2.14)

All the pertinent parameters needed to describe the interaction between an incident photon and an atomic electron have now been derived. Now, the theory necessary for calculating the number of secondary electrons produced per incident particle will be developed.

(3) Secondary electron production

In a thin absorbing sample, having $\frac{N}{A}$ atoms/gm, each with Z electrons/atom, and of a thickness ΔR in gm/cm², there are $\frac{N}{A}$

electrons/gm and $\frac{N_a Z \Delta R}{A}$ electrons/cm². Let a collimated beam of no particles, each with energy E_o , pass normally through the sample (figure (2,3)).

The number dn = n_0 - n is the number of primary particles giving up some of its energy to produce secondary electrons. Therefore, the number of secondary electrons per incident particle produced in ΔR is

$$-\frac{dn}{n_0} = \frac{N Z}{A} \triangle R \sigma . \qquad (2.16)$$

- $\frac{dn}{n}$ will be redefined to equal S: therefore, equation (2.16) becomes

$$S(E) = \frac{N_{a}Z}{A} \Delta R \circ (E)$$
 (2.17)

with its energy functional dependence included. The constant in equation (2.17) can be evaluated by assuming A = 2Z (low Z materials) and its value is 0.30125 $\times 10^{24}$ electrons/gm or 0.30125 $\frac{\text{cm}^2 \cdot \text{e}}{\text{gm} \cdot \text{barns}}$. Therefore, equation (2.17) becomes

$$S(E) = 0.30125 \Delta R \sigma(E)$$
 (2.18)

where S(E) is in secondary electrons per incident particle, $\triangle R$ is in gm/cm^2 , and $\sigma(E)$ is in barns/electron. This is a general derivation since the incident particle can be a gamma ray, an electron, or an X ray if the appropriate cross sections are taken into account.

Now that the number of secondaries produced per incident particle in a differential element ΔR have been determined, it is appropriate to evaluate the number of those produced which escape and the number which are deposited.

(4) Probability of escape and deposition

$$P_{e}(R) dR = \frac{1}{\alpha\sqrt{\pi}} exp \left[-\frac{(R-\overline{R})^{2}}{\alpha^{2}} \right] dR \qquad (2.19)$$

where

$$(R-\overline{R})_{AV}^2 = \int_{-\infty}^{\infty} P_e(R) (R-\overline{R})^2 dR = \frac{1}{2} \alpha^2$$
. (2.20)

Experimentally, it is not very convenient to make direct measurement of the number of particles whose ranges end in the interval from R to R+dR. Instead, the number of particles which reach a certain distance R from the source, that is, particles whose range is greater than R, are usually measured.

Equation (2, 19) can be integrated from R to infinity to give

$$P_e(R) = \frac{1}{2}(1 - erf \frac{R - \overline{R}}{\alpha})$$
 (2.21)

where P_e(R) is the probability of escape or the intensity of the electrons as a function of distance (the ordinate of the number-distance curve in figure

2.4), erf $x = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$ is the error function or the probability integral,

and α is the range-straggling parameter (the half-width of the Gaussian distribution at 1/e of the maximum). The quantity α is also equal to $\sqrt{2}$ times the standard deviation, α . The slope of the curve in figure 2.4 is equal to $1/\alpha\sqrt{\pi}$. Therefore, the relationship between the practical R_p and average ranges \overline{R} is

$$\frac{.5}{R_p - R} = \frac{1}{\alpha \sqrt{\pi}} . \qquad (2.22)$$

Solving explicitly for the range straggling parameter α , one finds the following relationship

$$\alpha = \frac{2}{\sqrt{\pi}} \left(R_{p} - \overline{R} \right). \tag{2.23}$$

To evaluate the probability of escape or the probability of being deposited $P_d(E)$ which is by definition $\begin{bmatrix} 1 - P_e(R) \end{bmatrix}$, it is only needed to determine the practical and average ranges.

(5) Range of electrons.

Empirical relationships between the practical range R_p and the energy E have been proposed by many workers. An excellent review of all electron range-energy work up to 1951 has been given by Katz and Penfold (1952). Based on a compilation of all available data, these authors propose the following empirical relationships, where E is in Mev and R_p is in gm/cm². For energies from 0.01 to ~3 Mev

$$R_p = 0.412 E^n$$

$$n = 1.265 - 0.0954 \ln E$$
(2.24)

and for energies from ~1 to ~20 Mev

$$R_p = 0.530 E - 0.106.$$
 (2.25)

The agreement between the above empirical analytical forms and experimental range-energy curves is excellent. This fact can be observed in figure 2.5.

By comparing the average range \overline{R} and the practical range R_p of the experimental absorption curves given in figure 2.6, the relationship relating then, averaged, gives

$$\bar{R} = 0.662 R_{p}.$$
 (2.26)

The three preceding equations will be used for determining the average range of an electron as a function of energy.

Now, it is possible to evaluate equation (2, 23) in terms of the average range \overline{R} . The result is

$$a = 0.5762 \overline{R}$$
, (2, 27)

(6) Number and energy losses.

The total number of secondary electrons born per incident particle in $\triangle R$ is S(E) given by equation (2.18). The probability of these electrons escaping from $\triangle R$ is $P_e(E)$. Therefore, the fraction of secondaries which escapes per incident particle $S_e(E)$ is

$$S_{p}(E) = S(E) P_{p}(R)$$
 (2.28)

or

$$S_{e}(E) = 0.30125 \ \Delta R \ \sigma \ (E) \ P_{e}(R)$$
 (2.29)

454

By the same argument, the number of secondaries deposited per incident particle $S_d(E)$ is

$$S_d(E) = S(E) P_d(R), \qquad (2.30)$$

Since,

$$P_d(E) = 1 - P_e(R)$$
 (2.31)

Equation (2, 30) can be written in the form

$$S_d(E) = S(E) \left[1 - P_e(R)\right]$$
 (2.32)

or

$$S_d(E) = 0.30125 \ \Delta R \ \sigma(E) \ \left[1 - P_e(R)\right]$$
 (2.33)

The total number of secondaries produced per incident particle is also equal to

$$S(E) = S_{e}(E) + S_{d}(E)$$
 (2.34)

The energy which is lost from the sample would be equal to the number which escape $S_{\mu}(E)$ times the electron energy of escape E_{μ} ,

$$\mathbf{E}_{\mathbf{g}} = \mathbf{E}_{\mathbf{e}} \mathbf{S}_{\mathbf{e}} (\mathbf{E}) . \tag{2.35}$$

Conversely, the energy deposited is the sum of the energy deposited by the electrons which escape and the energy deposited by the electrons that did not escape.

$$E_d = (E - E_e) S_e(E) + E S_d(E)$$
. (2.36)

Equation (2, 36) can also be written in the following form:

$$\mathbf{E_d} = \mathbf{E} \, \mathbf{S}(\mathbf{E}) - \mathbf{E_s} \, \mathbf{S_s}(\mathbf{E}) \tag{2.37}$$

by combining and substituting equation (2.34). The energy lost $E_{\underline{g}}$ and the energy deposited $E_{\underline{d}}$ are in units of Mev. To change units to Mev/gm/cm², it is only necessary to divide by the sample thickness T.

(7) Energy losses by gamma rays

The energy losses by gamma rays can be determined by use of figure 2.7. By a weighted average of the prompt fission spectrum, figure 2.8, it was found from figure 2.7 that

$$1\frac{r}{hr} = 5.3 \times 10^5 \text{ Mev/cm}^2 \cdot \text{ sec.}$$

By eliminating time, 1 r is $1.91 \times 10^9 \text{ Mev per cm}^2$ and deposits 100 ergs/gm of material or

$$\frac{1 \text{ Mey}}{\text{cm}^2} = 5.24 \times 10^{-8} \text{ ergs/gm},$$

Approximately 7.7 Mev/fis are liberated when an atom of U^{235} fissions. Therefore the energy deposited per unit thickness per fission in a sample material is

However, the soft collisions (low-energy secondary electrons) cause approximately half of this energy deposition. Therefore since the interest is in the hard collisions (high energy secondary electrons), the above number will be divided by two with the result

1 fission = 0.126 Mev/gm/cm².

c. Procedure

The calculations in this report were made on a CDC 1604 high-speed digital computer. The programs and sample outputs are contained in the appendixes. To simplify the explanation of the calculational procedure, a slide-rule accuracy example will be presented. The calculations were done for sample thicknesses in the range from 0.01 to 10 gm/cm².

(1) Energy groups

The Maienschein (1958) energy spectrum, figure 2.8, for prompt fission gamma radiation from U^{235} fission for times less than 5×10^{-8} seconds, was used in the gamma-ray program. This spectrum was considered to be the best available for this type of calculation by several of the prominent people in the field. The average gamma ray energy from this spectrum was determined and found to be approximately 0.85 MeV. The number of gamma rays per fission was found to be 9.1 with energy being emitted at a rate of 7.7 MeV/fission. All this information was evaluated by choosing a ΔE of 0.2 MeV on the abscissa and reading the average ordinate. Table 2.1 contains the results of the average ordinate multiplied by ΔE as a function of the appropriate energies. The number of gamma rays per fission $N_{\rm m}$ was used as a weighting factor in determining the following parameters.

The energies of the incident photons were divided up into 39 groups as shown in table 2.1. The average energy of the group was chosen as the representative photon; for example, the first group with energies between 0.0 and 0.2 Mev has an average photon energy of 0.1 Mev.

(2) Sample division

The sample was divided into $\triangle Rs$ with thicknesses decreasing by one-half each time, figure 2.9. The numbers in represent the center lines of each $\triangle R$. The quantity R_n represents the shortest distance a secondary electron would have to travel before escaping. These quantities are related mathematically by the following relationships:

$$R_{1} = \frac{3}{4} T \qquad \qquad \triangle R_{1} = \frac{1}{2} T$$

$$R_{2} = \frac{1}{2} R_{1} \qquad \qquad \triangle R_{2} = \frac{1}{2} \triangle R_{1} \qquad (2.38)$$

$$R_{n} = \frac{1}{2} R_{n-1} \qquad \qquad \triangle R_{n} = \frac{1}{2} \triangle R_{n-1}$$

$$R_{f} = \frac{2}{3} R_{f-1} \qquad \qquad \triangle R_{f} = 2 R_{f}$$

The final R_n was chosen to be greater than $5 \times 10^{-4} \ gm/cm^2$. Therefore, the final R must be equal to or less than $3 1/3 \times 10^{-4} \ gm/cm^2$, or ΔR must be equal to or less than $6 2/3 \times 10^{-4} \ gm/cm^2$. There were 5 divisions or ΔRs for a sample thickness of 0.01 gm/cm² ranging to 15 divisions for a thickness of 10 gm/cm².

(3) Attenuation

In the passage of gamma-ray photons through matter, they are absorbed so that the intensity falls off exponentially. This arises from the fact that the extent of absorption in a small thickness dR in gm/cm² of matter, at any point in the medium, is proportional to the radiation intensity at that point and to the thickness traversed; that is,

$$\frac{dI}{I} = -\frac{\mu}{\rho} dR \qquad (2.39)$$

Integrating this equation gives

$$I = I_0 e^{-\frac{\mu}{\rho} R}$$
 (2.40)

where μ is the linear absorption coefficient of the absorber for the given radiation. If A=2Z, then $\mu/\rho=0.30125$ d, where d is the total cross section in barns. Therefore, equation (2, 40) becomes

$$I = I_0 e^{-0.30125} \circ (T - R_n)$$
 (2.41)

where T and R_n are the same quantities as defined in figure 2.9. The attenuation factor A is

$$A = \frac{I}{I_0} = e^{-0.30125 \text{ o } (T - R_n)}$$
 (2.42)

This factor was multiplied by the secondary electron emission efficiencies, equations (2, 29) and (2, 33), to take into account the attenuation of the incident gamma rays.

(4) Sample problem

The parameters in table 2, 2 will be used in the following sample calculation.

In the beginning, equation (2.21), the probability of escape P_e , was investigated:

$$P_e(R) = \frac{1}{2}(1 - erf(\frac{R - R}{\alpha})).$$
 (2.21)

Notice, if $R = \overline{R}$ the argument of the error function is zero; hence, the error function is zero making $P_{e}(\overline{R}) = 0.5$, which is the correct value. As R approaches infinity the error function approaches 1, thus, $P_{e}(\infty) = 0$, which is a correct value. However, on the other end where R = 0, the argument of the error function becomes, by employing equation (2.27), a negative 1/0.5762. This makes the error function take on a value of negative 0.98588; hence, the $P_{e}(0) = 0.99294$. This value should be exactly 1, since the electron does not have to travel any distance (R = 0); thus, the $P_{e}(0)$ must equal 1. Therefore, 0.99294 was used as a scaling factor for the probability of escape P_{e} .

The next step was to evaluate the cross sections for the energy group of incident photons chosen. In this case the group lies between 1.0 and 1.2 Mev of table 2.1 with an average photon energy of 1.1 Mev. The

quantity, $a = \frac{\langle hv_o \rangle_{AV}}{m_o c^2}$, is evaluated and in this case equals 2.155.

Substituting this value in equations (2.6) and (2.10), then evaluating, one finds

 $\sigma = 0.2015$ barns

and

 $d_{a} = 0.0913 \text{ barns.}$

From equation (2.13), the average kinetic energy $T_{\mbox{AV}}$ of the recoil Compton electron is

$$T_{AV} = \langle hv_o \rangle_{AV} \frac{d_a}{d} = 0.499 \text{ Mev.}$$

By a careful investigation of equations (2,24) and (2,25), it was determined that an energy of 2,4 Mev would be the best cutoff point between the two equations. Therefore, since the above energy is less than 2,4 Mev, equation (2,24) was used in combination with equation (2,26), giving

$$\bar{R} = 0.273 E^{n}$$

$$n = 1.265 - 0.0954 \ln E$$
(2.43)

In this case E is T_{AV} and evaluating equation (2.43) for the above T_{AV} gives

$$\bar{R}(0.499) = 0.1081 \text{ gm/cm}^2$$
.

The average kinetic energy $T_{\mbox{AV}}$ and range $\mbox{$\overline{R}$}$ for the Compton electron have been determined. The next most important thing to calculate is the cosine of the angle of emission. As given by equation (2.15), this

quantity can be evaluated immediately.

$$\cos \theta_{AV} = 0.839.$$

The probability of escape was determined by equation (2.21) to be

$$P_{en}(R) = \frac{1}{2} \left(1 - erf \frac{R - \overline{R}}{\alpha}\right).$$

To get a physical meaning of this quantity, figure 2.10 is presented. Notice that R is the actual distance the electron travels and R_n is the distance from the center line of the appropriate $\triangle R$ to the interface (shortest distance). The quantities R and R_n are related by the following equation:

$$R = R_{n}/\cos \theta_{AV}$$
 (2.44)

In this problem, R = 0.223. The probability of escape, using the above parameters, is

$$P_{e2}(R) = 0.0047$$
.

The attenuation A of the incident beam will be determined by employing equation (2, 42). The result is

$$A = 0.98121$$
.

Finally, the secondary electron emission efficiencies may be calculated. Equation (2, 29) gives the fraction of secondary electrons which escape per incident particle and takes the following form when the attenuation is included:

$$S_{en}(E) = 0.30125 \Delta R_n \sigma(E) P_{en}(R) A_n$$
 (2.45)

Substituting and evaluating equation (2.45) for this sample problem gives

$$S_{e2}(1.1) = 3.486 \times 10^{-5} \text{ se/i} \gamma$$
.

To properly weight this number for the entire prompt fission spectrum (figure 2, 8), the number of gammas per fission $N_{\underline{m}}$ from table 2.1 for the energy group from 1.0 to 1.2 MeV was multiplied by the above number. This gives

$$S_{e2}(1,1) = 1,743 \times 10^{-5} \text{ se/fis}.$$

To determine the number given in column 7 of appendix A for this energy group, the above number must be added to the contribution for all the other ΔRs ; i.e., column 7 is a sum on R.

$$S_{e}(E) = N(E) \sum_{n=1}^{R} S_{en}(E)$$
 (2.46)

Notice that this number is very small compared with the number given (2.614×10^{-3}) . Thus, this indicates that most of the electrons which escape come from the final ωRs . Column 8 is a double sum on R and E. It is also weighted by the numbers given in table 2.1 in the following way:

$$S_{e} = \frac{\sum_{E} S_{em} (E)}{\sum_{m=1}^{E} N_{m}}$$
(2.47)

or by substituting equation (2, 46)

$$S_{e} = \frac{\sum_{\Sigma} \left[N_{m} \sum_{n=1}^{\Sigma} S_{en}(E) \right]}{\sum_{m=1}^{\Sigma} N_{m}}$$
(2.48)

The final number S_e in column 8 is the <u>total number of secondaries per incident photon</u> with the proper weighting. In this case, for a thickness of 0.5 gm/cm², S_p is 2.952 x 10^{-3} .

The number of secondaries per incident particle which are deposited is determined in a similar manner. Equation (2.33) becomes

$$S_{dn}(E) = 0.30125 \Delta R_n \le (E) \left[1 - P_{en}(R)\right] A_n$$
 (2.49)

after taking the R dependence and the attenuation into account. Substituting and evaluating equation (2.49) gives

$$S_{d2}(1.1) = 7.410 \times 10^{-3} \text{ se/i}$$

However, the number in column 9 is given as a sum on R and is weighted by the numbers in table 2.1; for example,

$$S_{d2}(1.1) = 3.705 \times 10^{-3} \text{ se/fis}.$$

Notice that this number is approximately equal to the one given (1.239 x 10^{-2}), thus indicating that most of the electrons deposited come from the first ΔRs . Column 9 is the following sum:

$$S_{d}(E) = N(E) \sum_{n=1}^{R} S_{dn}(E)$$
 (2.50)

in secondaries per fission. Like the preceding discussion, column 10 is

$$S_{d} = \frac{\sum_{m=1}^{E} \begin{bmatrix} N_{m} & \Sigma & S_{dn} \\ N_{m} & \Sigma & S_{dn} \end{bmatrix}}{\sum_{m=1}^{E} N_{m}}$$
(2.51)

in secondaries per incident photon.

To calculate the energy of escape, it is necessary to recall the probability function and a diagram for simplification, figure 2.11. The area under the curve to the right of $P_e(R)$ represents the probability of escape and is equal to the value given for $P_e(R)$. Since the curve is Gaussian, the area under the entire curve is unity. Therefore, the remaining area is the probability of being deposited $\left[P_d(R) = 1 - P_e(R)\right]$. To determine the average energy of escape E_e , it will be necessary to go to the mid-point of the remaining area, which is the same as taking half of the actual probability of escape $P_e(R)$, and work backwards through the probability function. Thus

$$P_{e}(R_{e}) = \frac{1}{2} P_{e}(R)$$
 (2.52)

The energy of escape is related to the range which remains after escape. Therefore, it is interesting to determine the range which is left over, namely

$$\Delta R_e = R_e - R \tag{2.53}$$

The energy can then be calculated from the semi-empirical range-energy equations given in a previous subdivision. From figure 2.11, the following relationship can be derived by arrangement of parameters:

$$\Delta R_e = \left(\frac{R_e - \overline{R}}{\alpha}\right) \alpha + \overline{R} - R. \qquad (2.54)$$

Notice that the argument of the error function from equation (2.52) is the quantity $\left(\frac{R_e-\overline{R}}{\alpha}\right)$. Therefore, by solving equation (2.52) for this quantity and substituting it in equation (2.54), ΔR_e can be solved since the other quantities are known.

For example, in the sample problem $P_e(R) = 0.0047$ equation (2.52) give $P_a(R_p) = 0.00235$, since

$$P_e(R_e) = \frac{1}{2} \frac{(1 - erf R_e - \overline{R})}{\alpha}$$

Solving this equation for the argument of the error function gives

$$\left(\frac{R_e - \overline{R}}{\sigma}\right) = 2.007.$$

Substituting in equation (2,54) and evaluating give

$$\Delta R_e = 9.45 \times 10^{-3} \text{ gm/cm}^2$$
.

By choosing the correct range-energy equation for this ΔR_e and solving it explicitly for energy, it is found that

$$E_e = \exp \left[\frac{1.265 - \sqrt{1.6 - 0.3816 \ln (\Delta R_e/0.273)}}{0.1908}\right] (2.55)$$

Solving equation (2.55) gives

$$E_e = 0.103 \text{ Mev}$$
.

The energy lost from the sample was caluclated using

TDR-63-50

equation (2.35).

$$E_{\ell n}(E) = E_{en} S_{en}(E)$$

$$E_{\ell 2}$$
 (E) = 1.8 x 10⁻⁶ Mev/fis.

This is not equal to the number $(8,448 \times 10^{-4})$ given in column 3 for the energy group because column 3 is a sum on R. Hence, column 3 is

$$E_{\ell}(E) = \sum_{n=1}^{R} E_{en} S_{en}(E)$$
. (2.56)

Column 4 is a double sum taking the following form:

$$E_{\ell} = \sum_{m=1}^{E} \sum_{n=1}^{R} E_{emn} S_{emn} (E) . \qquad (2.57)$$

Likewise, columns 5 and 6 take the same form as shown above but they represent the energy deposited. Equation (2, 36) gives the energy deposited:

$$E_{dm}(E) = (E - E_e) S_{em}(E) + E S_{dn}(E)$$

$$E_{d2}(E) = 1.89 \times 10^{-3} \text{ Mev/fis}.$$

This is approximately equal to the number given in column 5 (6.720 x 10^{-3}), indicating that most of the energy which is deposited occurs in the first ΔRs . Column 6 is the energy deposited summed on R and E.

The second set of data in the appendixes represents the parameters for the energies of escape. Columns 1 and 2 represent the energy bands for the secondary electron energy of escape. Column 3 is

the number of secondaries per incident particle S_e which escape in that energy band. Column 4 is the average angle of escape in degrees for electrons which escaped in that energy band. Column 5 is the product of the average energy for the group times the number of secondaries per incident particle which escape $(\overline{E} \ S_e)$. The energy spectra to follow were plotted using this data.

The final set of data in the appendixes gives the angular distribution. Columns 1 and 2 are the lower angle limit and upper angle limit, respectively. Notice that the angular interval was chosen to be 2 degrees. Column 3 is the number of secondaries emitted in that angular interval. The angle-of-emission spectra to follow were taken from these data.

d. Results

The results are contained in table 2, 3 (Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for Prompt Fission Gamma Radiation) and table 2, 4 (Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for Prompt Fission Gamma Radiation). The data contained in table 2, 3 can be found plotted in figures 2, 12 - 2, 15, and table 2, 4-2, 5 data are in figures 2, 16 - 2, 27.

e. Discussion

Figure 2.12 gives the number of secondaries escaping S_e as a function of thickness. Notice that at a thickness of 0.01 gm/cm², S_e is 4.7 x 10⁻⁴ secondary electrons per incident photon (se/iγ) with a constant increase with thickness to approximately 1 gm/cm² where the curve reaches a maximum value of 3 x 10⁻³ se/iγ (0.3%); thereafter it begins to decrease with thickness to a value of 2 x 10⁻³ se/iγ at 10 gm/cm². The increase is due to more atomic electrons being made available and the decrease is due to the attenuation of the incident beam.

Figure 2.13 is a plot of the number of secondaries deposited S_d as a function of thickness. It forms a straight line on log-log paper. This function increases with thickness from 7×10^{-3} se/iy at 0.10 gm/cm² to

0.9 se/iy at 10 gm/cm². This seems reasonable since one would expect more secondary electrons to be deposited as the thickness is increased.

In figure 2.14, the energy of escape per unit path length is given as a function of thickness. It is shown that the energy loss E_g is greatest for small thicknesses $(E_g = 1.45 \times 10^{-1} \text{ Mev/gm/cm}^2)$ and decreases to 1.25 x $10^{-3} \text{ Mev/gm/cm}^2$ for large thicknesses (10 gm/cm²), which is as expected.

Figure 2.15, the energy deposited as a function of thickness, follows. the reverse of figure 2.14; that is, the energy deposited increases with thickness. It should be observed that upon adding the curves in figures 2.14 and 2.15 point for point the total energy removed from the incident beam is 0.170 Mev/gm/cm². This is in good agreement with the number predicted in section 2b(7) (0.126 Mev/gm/cm²).

Figures 2, 16 to 2, 26 contain the energy and angle-of-emission spectra for prompt fission gamma radiation for thicknesses in the range from 0,01 to $10~\rm{gm/cm}^2$. The energy spectrum is a plot of the number of secondaries escaping per incident photon per energy interval, S_e as a function of the energy of escape E_a .

Figure 2.27 contains all the energy spectra so one can get a relative perspective of their intensities as a function of thickness. Notice that the intensity increases with thickness up to 0.75 gm/cm² and then decreases. The most probable energy of escape $E_{\rm e}$ occurs at approximately the same value (0.15 Mev) for almost all the thicknesses except the larger ones where the peaks are broader, making the most probable energy of escape less pronounced.

Table 2.1

Number of Gamma Rays Per Fission as a Function of Incident Gamma Energy

av o (Mev)	H _m (uv o (Mev)	N _m (γ/fis)	hv o (Mev)	N _m (γ/fis)
0 - 0.2	2. %	2.0 - 2.0	. 068	5.2 - 5.4	.0050
4.0 - 5.0	2.00	2.4 - 3.0	.052	5.4 - 5.6	. 2400.
5.0 - 4.0	1.46	3.0 - 3.2	.053	5.6 - 5.3	₹00.
0.6 - 0.3	ま。	3.2 - 3.4	٠٥34	5.3 - 6.0	.0023
0.8 - 1.0	09.0	3.4 - 3.6	.028	6.0 - 6.2	.0017
1.0 - 1.2	0.50	3.6 - 3.4	, 024	6.2 - 6.4	0000.
1.2 - 1.4	04.0	3.0 - 4.0	٠٥١٠	9.9 - 4.9	. 00033
1.4 - 1.6	0.24	4.0 - 4.2	910.	6.6 - 6.3	08000.
1.6 - 1.8	0.20	1.1 - 5.4	.012	6.8 - 7.0	06000.
1.8 - 2.0	0.16	9.4 - 4.4	.010	7.0 - 7.2	.00100
2.0 - 2.2	0.13	b.4 - 6.4	₹900*	7.2 - 7.4	18000.
2.2 - 2.4	0.11	4.8 - 5.0	₹₹00°	J.4 - 7.6	04000.
2.4 - 2.6	0.036	5.0 - 5.2	€₩00•	7.6 - 10.5	. 00029

Table 2.2
Parameters for Sample Problem

Parameter	Value
T (thickness)	0.50 gm/cm ²
hv o	1.0 - 1.2 Mev
< hv o> AV	1.1 Mev
R_2	0.1875 gm/cm ²
△ R ₂	0.1250 gm/cm ²

Table 2.3

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of
Thickness for Prompt Fission Gamma Radiation

T	E	Ed	Se	s _d
(gm/cm ²)	(Mev.cm ² /gm.fis)**	(Mev.cm²/gm.fi	s)** (se/iγ)	(se/i _Y)
10.0	1.20-3*	1.69-1	1.91-3	9.25-1
5.0	2.94-3	1.68-1	2.46-3	4.61-1
2.5	6.51-3	1.64-1	2.81-3	2.29-1
1.0	1.71-2	1.53-1	3.02-3	8.97-2
0.75	2.26-2	1.48-1	3.03-3	6.66-2
0.50	3.24-2	1.38-1	2.95-3	4.35-2
0.25	5-37-2	1.17-1	2.61-3	2.06-2
0.10	8.54-2	8.49-2	1.92-3	7-39-3
0.05	1.08-1	6.29-2	1.36-3	3-29-3
0.025	1.27-1	4.36-2	9.05-4	1.42-3
0.01	1.45-1	2.52-2	4.69-4	4.63-4

^{*} 1.2 x 10⁻³

^{** 9.1} gammas/fis

Table 2.4

Number of Secondaries Which Escape as a Punction of Energy, Average Angle of Enission and Thickness for Prompt Fission Gamma Radiation

*	T = 10 gm/cm ²	Q	T = 5 6m/cm ²	2 11 2)	T = 2.5 gm/cm ²	m/cm2	$T = 1.0 \text{ m/cm}^2$	cm2
b e (Mev)	Se(10-4 se)	θ (deg)	Se(10-4 86) 0 (deg)	(deg)	Se(10-4 se)	θ (deg)	$\mathbf{s_e(10^{-4}\ se)}_{\overline{1}\overline{Y}} \ \theta \ (\mathrm{deg}) \ \mathbf{s_e(10^{-4}\ se)}_{\overline{1}\overline{Y}}$	θ (deg)
0.05	7.699	40.43	12.310	40.43	15.580	40.43	15.970	39.45
0.15	17.340	32.93	25.050	32.93	30.130	32.93	29.350	35.36
0.55	13.400	22.45	23.27	23.32	26.190	26.55	20.230	26.44
1.0	7.446	20.57	8.973	20.57	9.837	21.64	4.972	23.08
2.0	1.269	18.76	1.465	18.76	1.574	18.76	1.229	19.33
0.4	0.043	14.62	0.053	14.62	950.0	14.62	0.029	14.70
0.9	2000.0	12.05	0.0008	12.05	0.0008	12.05	0.002	12.05

* 6E = 0.10 Mev

Table 2.4 (Cont'd)

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Enission and Thickness for Prompt Fission Gamma Rediation

	T = 0.75 gm/	5 gm/cm ²	$T = 0.50 \mathrm{gm/cm}^2$	n/cm ²	T = 0.25 gm/cm ²	/cm ²	T = 0.10 cm/cm ²	/cm2
R _e (Mev)	Se(10-4 se)	θ (deg)	θ (deg) $S_{\mathbf{e}}(10^{-lt} \frac{\mathbf{se}}{1\Upsilon})$		θ (deg) S _e (10-4 se) 1γ	(deg)	θ (deg) $S_{\mathbf{e}}(10^{-4} \text{ se})$ $\frac{1}{17}$	θ(deg)
0.05	15.610	40.23	16.730	£.04	17.140	41.08	15.690	42.04
0.15	38.030	35.02	30.540	36.99	31.130	37.73	36.000	38.95
0.55	21.980	27.53	18.200	28.80	14.190	30.04	14.450	31.19
1.0	7.522	23.40	4.214	24.86	4.255	24.86	4.383	25.45
2.0	1.338	19.51	1.090	19.75	0.835	20.06	0.581	20.17
0.4	0.048	14.65	0.029	14.70	0.029	14.70	0.014	14.76
0*9	0.00	12.05	0.002	12.05	0.002	12.05	0.002	12.05

Table 2.4 (Cont'd)

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Emission and Thickness for Prompt Fission Gamma Radiation

B. (Mev)	T = 0.05 gm/cm ²	2 H3	T = 0.025 gm/cm ²	/cm ²	T = 0.01 gm/cm ²	
	Se(10-4 se)	θ (deg)	Se (10-4 se)	θ (deg)	Se(10 ⁻⁴ Se)	θ (deg)
.05	15.640	42.55	15.650	42.86	9.270	43.30
.15	30.430	39.44	22.460	39.72	12.110	40.10
.55	4.113	31.19	4.120	31.19	1.104	31.19
1.0	2.200	25.70	0.736	25.79	0.662	25.79
2.0	0.220	20.24	0.220	20.24	0.088	42.05
0.4	0.005	14.79	0.005	14.79	0.002	14.79
0.9	0.002	12.05	0.001	12.05	:	:

Table 2.5

Mumber of Secondaries Which Escape as a Function of Angle and Thickness for Prompt Fission Gamma Radiation

	T = 10gm/cm ²	T = 56m/cm ²	T = 2.5gm/cm ²	T = 1.0gm/cm	$T = 0.75 \text{gm/cm}^2$
& (deg)	S _e (10 ⁻¹ se)	S _e (10-4 se)	S _e (10 ^{-1, se)}	S _e (10 ⁻⁴ se)	Se(10 ⁻⁴ se)
15	3.227	3.607	3.813	3.019	2.386
ส	12.860	15.150	16.450	17.480	17.400
25	20.220	24.930	27.680	29.930	29.910
೫	15.360	20.300	23.340	25.230	26.080
35	12.170	17.010	20.110	21.970	22.830
14	8,483	13.110	16.300	18.700	19.320
54	90.0	0.004	900.0	0.071	0.278
					٠

1 AB = 2

-,6

Table 2.5 (Cont'd)
Number of Secondaries Which Escape as a Function
of Angle and Thickness for Prompt
Fission Gamma Radiation

	$T = 0.50 \text{gm/cm}^2$	T = 0.25gm/cm ²	$T = 0.25 cm/cm^2$ $T = 0.10 cm/cm^2$	T = 0.05gm/cm ²	$T = 0.05 \text{gm/cm}^2$ $T = 0.025 \text{gm/cm}^2$ $T = 0.01 \text{gm/cm}^2$	T = 0.01gm/cm ²
e (deg)	Se(10-4 se)	Se(10-4 se)	S _e (10 ⁻⁴ se)	$S_{\mathbf{e}}(10^{-4} \text{ se})$	$S_{\mathbf{e}(10^{-4} \text{ se})}$	$S_{\mathbf{e}}(10^{-4} \text{ se})$
15	1.643	9£8.0	0.337	0.169	₩0.0	0.034
ដ	14.330	7.960	3.257	1.635	0.819	0.328
25	30.540	23.360	10.210	5.159	2.588	1.038
ಜ	25.940	26.310	20.140	10.840	5.502	2.211
35	22.720	23.110	23.790	18.150	9.811	3.992
14	19.530	19.960	20.500	20.590	2.061	12.110
54	0.077	0.080	0.252	0.254	0.255	900.0

Figure 2.1 Relative importance of the three major types of gamma-ray interactions. The lines show the values of Z and hv for which the two neighboring effects are just equal (from Evans, 1955, p. 712)

· :

Figure 2, 2 Trajectories in the scattering plane for the incident photon hv , the scattered photon hv , and the scattered electron which acquires momentum p and kinetic energy T (from Evans, 1955, p. 675)

Figure 2.3 A thin absorbing sample

Figure 2.4 The number-distance curve for an electron with energy E, i.e., monoenergetic particles.

Figure 2.5 Empirical range-energy relationship for electrons absorbed in aluminum with data points shown (Evans, 1955, p. 624)

Experimentally measured absorption curves for monochromatic electrons in aluminum (from Marshall, J. and Ward, A.G., 1937) Figure 2.6

Figure 2.7 Gamma flux to give 1 roentgen/hour (from Rockwell, 1956, p. 20)

Figure 2.8 Energy spectrum of prompt fission gamma rays from U^{235} fission for times less than 5×10^{-8} seconds

Figure 2.9 A typical sample division

Figure 2, 10 Diagram of the probability of escape Pe

Figure 2.11 Diagram for the calculation of the energy of escape $E_{\underline{e}}$

The number of secondaries escaping Se as a function of thickness for prompt fission gamma radiation Figure 2, 12

Figure 2.14 The energy of escape per unit path length as a function of thickness for prompt fission gamma radiation (9.1 γ /fis).

The energy deposited per unit path length as a function of thickness for prompt fission gamma radiation (9. $1\gamma/\mathrm{fis}$). Figure 2, 15

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.01 gm/cm² ($\Delta E=0.1$ Mev; $\Delta\theta=2^0$) Figure 2. 16

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.025 $\mathrm{gm/cm}^2$ Figure 2. 17

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness $0.05~{\rm gm/cm^2}$ Figure 2. 18

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness $0.\,10~\mathrm{gm/cm^2}$ Figure 2. 19

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0, 25 $\mbox{gm/cm}^2$ Figure 2.20

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.50 $\mbox{gm/cm}^2$ Figure 2.21

Figure 2.22 Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 0.75 $\rm gm/cm^2$

Figure 2.23 Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness $1.0~\mathrm{gm/cm^2}$

Figure 2, 24 Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness 2, 5 $\rm gm/cm^2$

Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness $5.0~\mathrm{gm/cm^2}$ Figure 2, 25

Figure 2, 26 Energy and angle of emission spectra for prompt fission gamma radiation incident on a sample of thickness $10~\rm gm/cm^2$

Figure 2. 27 Energy spectra for prompt fission gamma radiation for thicknesses in the range from 0.01 to $10~\mathrm{gm/cm^2}$

3. SECONDARY ELECTRON EMISSION BY 25-MEV ELECTRONS

a. General remarks

Let us very briefly look at the electromagnetic phenomena that are of importance in the interaction with matter of high-energy charged particles, such as 25-Mev electrons from a linear accelerator (linac). We will consider first the phenomena that occur when a charged particle passes in the neighborhood of an atom.

- (1) If the distance of closest approach is large compared with the dimensions of the atom (10⁻⁸ cm), the atom reacts as a whole to the variable field set up by the passing particle. The result is an excitation or an ionization of the atom. The phenomenon can be treated by the ordinary methods of quantum mechanics without direct reference to radiation. For these comparatively distant collisions, the magnetic moment of the particle is of secondary importance, because the forces associated with the magnetic moment decrease as the third power of the distance, whereas the Coulomb forces decrease as the square of the distance. Therefore the passing particle can be considered as a point charge.
- (2) If the distance of closest approach is of the order of atomic dimensions, the interaction no longer involves the passing particle and the atom as a whole, but rather the passing particle and one of the atomic electrons. As a consequence of the interaction, the electron is ejected from the atom with considerable energy. This phenomenon is often described as a knock-on process. If the energy acquired by the secondary electron is large compared with the binding energy, the phenomenon can be treated as an interaction between the passing particle and a free electron. Radiation phenomena can still be neglected, and the ordinary methods of quantum mechanics can be used. However, one can no longer neglect the magnetic moments or spins of the interacting particles. When the particles are identical, exchange phenomena occur and acquire special importance when the minimum distance of approach becomes comparable with the DeBroglie wavelength. This collision process will be described as an elastic collision with atomic electrons.

- (3) When the distance of closest approach becomes smaller than the atomic dimensions, the deflection of the trajectory of the passing particle in the electric field of the nucleus becomes the most important effect. Classically, each deflection results in the emission of a weak electromagnetic radiation with a continuous frequency spectrum. Numerous soft quanta, whose total energy is usually a very small fraction of the particle energy, accompany the deflection. In few cases, however, one photon of energy comparable with that of the particle is emitted. Because of the comparatively small probability of this effect, the problem of the scattering of particles can be treated separately from that of radiation or bremsstrahlung.
- (4) The problem of computing the probability of photon emission by the passage of a charged particle through an atom requires the application of quantum electrodynamics. As in the scattering problem, the atom is still represented schematically by a central field of force. However, the Hamiltonian of the system, which in the scattering problem consisted of the Hamiltonian of the particle exclusively, now contains also the Hamiltonian of the electromagnetic field and a small interaction term that depends on the coordinates of both the particle and the field. This interaction term produces transitions corresponding to energy transfers between the particle and the electromagnetic field.

It will be shown that the predominant mechanism for energy loss by 25-Mev electrons is by ionization. This will be described as an elastic collision process between the incident electron and the atomic electrons.

Also, this collision mechanism could be considered as an inelastic collision between an incident electron and the atom as a whole.

For this discussion we will put methods (1) and (2) into one group and call it energy loss by ionization. Methods (3) and (4) will be put into another group and called energy loss by radiation or bremsstrahlung. As was mentioned above, we will show that energy loss by ionization collisions is much greater than energy losses by radiative-type collisions which give rise to the emission of photons.

The energy loss by ionization collisions and that loss by radiative-type collisions have a strikingly different behavior. The energy

loss due to radiation collisions is nearly proportional to Z^2 and the increase is nearly linear with energy, while ionization energy losses are proportional to Z and increase only logarithmically with energy. Therefore, when the energy of the incident electron E_0 becomes much greater than E_c then the radiation collision process predominates. If $E_0 \leq E_c$, then the ionization process predominates. Table 3.1 was taken from Segre (1953), p. 266.

Segre (1953) gives this relationship

$$\frac{(dE_o/dx) \text{ rad}}{(dE_o/dx) \text{ ion}} \approx \frac{E_o Z}{1600 \text{ m}_o c^2}$$

for the ratio of the radiative loss to the ionization loss. The above relationship was used to determine the ratio $\frac{(dE_o/dx) \text{ rad}}{(dE_o/dx) \text{ ion}}$, found in table 3.1. The incident electron energy is given to be 25 Mev.

One can see from table 3.1 that $E_C \approx E_0$ for iron (Z = 26). This means that radiative and ionization losses should be approximately equal at this point. Indeed, this is shown to be true by observation of the ratio of losses for iron. At this point the approximation A = 2Z begins to break down. Therefore, the concern will be with lower Z materials where the ionization losses are at least a factor of 2 greater than the radiative losses.

b. Theory

(1) Conservation laws for elastic collisions

For purposes of calculating the angular distribution, it is assumed that the theory of elastic collisions holds for the interaction of the incident electron and the atomic electrons. Whatever the forces involved, the principles of the conservation of energy and momentum must be satisfied, so that the consequences of these principles remain applicable under all circumstances.

Such consequences may now be considered by studying the

disturbance created by the passage of one particle through the field of force of another particle.

Conservation of momentum in the direction of the incident electron is

$$p_0 = p \cos \theta + p' \cos \phi \qquad (3.1)$$

and normal to the direction of the incident electron is

$$0 = p \sin \theta - p' \sin \varphi . \qquad (3.2)$$

A third relationship between these variables is obtained from the conservation of energy,

$$\mathbf{E}_{\mathbf{O}} = \mathbf{E} + \mathbf{E}^{\mathsf{T}} . \tag{3.3}$$

Using the relativistic relationship

$$pc = \sqrt{T (T + 2 m_0 c^2)}$$
 (3.4)

where T is the kinetic energy, and some algebra, one can solve for the cos θ by using the momentum vector diagram in figure 3.1 and the law of cosines. The cos θ becomes

$$\cos \theta = \frac{E \left(E_o + 2 m_o c^2\right)}{\left(p_o c\right) \left(pc\right)}$$
 (3.5)

where

$$p_o c = \sqrt{E_o (E_o + 2 m_o c^2)}$$
 (3.6)

TDR-63-50

and

$$pc = \sqrt{E(E + 2 m_o c^2)}$$
 (3.7)

If one evaluates equations (3, 5) and (3, 6) for $E_0 = 25$ MeV, the cos θ becomes in its simplest form

$$\cos \theta = 1.0206 \frac{\mathbf{E}}{\mathbf{p} c} \tag{3.8}$$

where

$$pc = \sqrt{E(E + 1.022)}$$
 (3.9)

where the secondary electron is born with energy E in Mev.

(2) Collision cross sections for identical particles

The collision between an incident electron and an atomic electron requires special treatment because the two electrons are indistinguishable after the collision. Consider the collision of an incident electron of kinetic energy E_0 with an atomic electron which was initially free and stationary. After the collision one of the electrons will have energy E_0 , the other, (E_0-E) . It cannot be determined which electron was the incident electron. Arbitrarily, the faster electron after the collision is defined as the incident electron insofar as future collisions are concerned. This is equivalent to restricting the energy transfer E_0 to values up to $E_0/2$. Thus, the maximum energy transferred to the secondary electron by the incident electron will be $E_{max} = E_0/2$.

To understand the quantum-mechanical cross sections for collisions between two electrons, it is helpful to evaluate the classical cross section first. Evans (1955) gives the classical differential cross section as

$$ds(E_0, E) = \frac{2\pi e^4}{m_0 v^2} \frac{dE}{E^2}$$
 (3.10)

This represents the probability that the incident electron loses energy E and has kinetic energy (E_0-E) after the collision. But to this must be added the classical probability that the incident electron loses energy (E_0-E) and has kinetic energy E after the collision, which is

$$d \in (E_0, E_0 - E) = \frac{2\pi e^4}{m_0 v^2} \frac{dE}{(E_0 - E)^2}$$
 (3.11)

Thus the classical differential cross section for the collision between identical particles, i.e., the probability that one particle will have kinetic energy E after the collision, is the sum of the two probabilities, or

$$d\sigma (E_o, E) = \frac{2\pi e^4}{m_o v^2} \frac{dE}{E^2} \left(\frac{E_o}{E_o - E}\right)^2 \left[1 - 2\frac{E}{E_o} + 2\frac{E^2}{E_o^2}\right]$$
(3.12)

This cross section applies only for $E \ge (E_0 - E)$, i.e., for $E \le E_0/2$. For $E \ge E_0/2$, the corresponding cross section is zero, because these collisions are already included in equation (3.12).

To introduce into the cross section the effects of quantum-mechanical exchange, and of relativity, Möller treated the problem of the collision between two free electrons, using the relativistic Dirac theory of the electron. In Möller's theory the spin (measured in units of \hbar) and its magnetic moment (measured in units of $e \hbar/2m_0 c$) were assumed to take on the normal values, namely, magnetic moment 0 for particles of spin 0, and 1 for charged particles of spin $\frac{1}{2}$ or 1.

Möller's cross section for extremely relativistic electrons $(E_o >> m_o c^2)$ is

$$ds = \frac{2\pi e^4}{m_0 v^2} \frac{dE}{E^2} \left(\frac{E_0}{E_0 - E}\right)^2 \left[1 - \frac{E}{E_0} + \frac{E^2}{E_0^2}\right]^2$$
(3.13)

Equation (3, 13) can be found in Evans (1955), p. 577, and Rossi (1952), p. 15. It has the same limits as equation (3, 12) and represents the probability that the slower electron will have energy E after the collision. In equation (3, 10) through (3, 13), v represents the velocity of the incident electron. In this case the incident electrons have an energy of 25 MeV, which have a velocity equivalent to the speed of light for all practical purposes.

Equation (3.13) can be integrated from E to $E_0/2$ to get

$$d(E_{0}, E) = \frac{2\pi e^{4}}{m_{0}c^{2}} \left[\frac{1}{2E_{0}} + \frac{1}{E} - \frac{E}{e_{0}^{2}} - \frac{1}{E_{0}-E} \right]$$
(3.14)

where σ (E₀, E) is the probability of producing a secondary electron with energy between E and E₀/2. The integration is somewhat tedious, but straightforward, and is not presented in this paper because of its length and lack of contribution. Thus, the cross section as given in equation (3, 14) will be used in equation (2, 18) to give the number of secondary electrons produced while the incident electron passes through the thickness T. Concern is only with the interactions of the incident electrons and the atomic electrons producing secondary electrons. It will be assumed that the tertiary electrons produced by the secondary electrons can be neglected in comparison with the secondary electron production.

The theory of the secondary electron production, the probability of escape and deposition, the range of electrons, and the number and energy losses shall be the same for incident electrons as for photons as described in section 2. The theoretical energy losses for charged particles will be presented next so that we can later compare the calculated and predicted theoretical numbers.

(3) Energy losses determined theoretically

The average energy loss by an electron initially with energy $\mathbf{E}_{\mathbf{O}}$ per unit path length is defined by

$$\frac{dE_{o}}{ds} = NZ \int_{E_{L}}^{E_{MAX}} E dc (E_{o}, E)$$
 (3.15)

where N is the number of atoms per cm³ and E_{MAX} is defined to be equal $E_{o}/2$. To evaluate the above integral collisions will be divided into hard and soft collisions. Namely, hard collisions will be defined as energy transfer between E_{MAX} and some arbitrary value E_{H} , where the only restriction on E_{H} is that it be large compared with the binding energy of the electron. Soft collisions are defined to be collisions where the energy transfer extends from the arbitrary value E_{H} to the minimum possible energy transfer E_{L} , which is generally of the order of an excitation energy or the ionization energy of one atomic electron. The hard collision contribution was determined by substituting equation (3, 13) for $d \in \{E_{o}, E\}$ in equation (3, 15) and integrating the straightforward but tedious function term by term to find

$$\frac{dE_{oH}}{ds} = \frac{2\pi e^4}{m_o c^2} \qquad \left[\left(\frac{\ln E_o}{E_H} \right) - \frac{0.261}{1.16} \right]$$

Since interest is only in high energy secondary electrons, the soft component will not be considered. Evaluating equation (3.16) for 25-MeV incident electrons and using $E_{\mbox{H}}$ as the ionization potential for aluminum (165 ev), gives

$$\frac{dE_{oH}}{ds} = 0.881 \text{ Mev/gm/cm}^2.$$

This number will be compared with the results of the computer calculation in the section on discussion of results.

c. Procedure

(1) Energy groups

Since the calculations were made on the CDC 1604 high-speed digital computer, the energy groups can be made as small as desired. However, it was found that $\Delta E = 10^{-2}$ MeV was as small as needed. Any further reduction in ΔE only increased the computer time proportionately and did not improve the calculation significantly to warrant the change. Thus, the energy groups used are shown in figure 3.2.

The first energy group starts at $E_0/2$ for reasons discussed in the theory. The lower bound was chosen to be the K shell ionization potential (165 ev) for aluminum for all runs. This does not present a serious error for two reasons. (a) Interest is only in high-energy secondary electron emission. (b) The ionization potential varies linearly with Z, so for low Z materials the above number is a good average.

(2) Sample division

Sample division is the same as described in section 2, c(2).

(3) Attenuation

The energy of the incident electron is reduced as it passes through a sample material. The incident electron is attenuated by calculating (using methods outlined in section 2, c(4)) the energy of the particle at the center of the ΔR in question and this is assumed to be the incident electron energy for the entire ΔR .

(4) Sample problem

The calculational method is the same as described in section 2.c (4) except for the differences mentioned above. Therefore, no sample problem will be given in this section.

d. Results

The results are contained in table 3.2 (Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for 25 MEV Electrons) and table 3.3 (Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for 25 MEV Electrons). The data contained in table 3.2 can be found plotted on figures 3.3 - 3.6, and table 3.3 and 3.4 data are plotted on figures 3.7 - 3.18.

e. Discussion

Figure 3.3 gives S_e versus thickness. At a thickness of 0.01 gm/cm², S_e is 7×10^{-3} se/ie with a constant increase with thickness to approximately 8×10^{-2} se/ie (8 percent) maximum at about 4 gm/cm^2 and then a decrease to 4.8×10^{-2} se/ie at 10 gm/cm^2 . The increase is due to more atomic electrons being made available and the decrease is due to the attenuation of the incident beam.

Figure 3, 4 forms a straight line on log-log paper and is a plot of S_d versus thickness. The values range from 46 se/ie at 0.01 gm/cm² to 4600 se/ie at 10 gm/cm². One would expect the number to become larger with thickness.

Figures 3.5 and 3.6 will be considered together. The former is a plot of the energy of escape E_{g} and the latter is a plot of the energy deposited E_{d} per unit path length as a function of thickness. Adding these two curves point for point gives the energy liberated by the incident beam; this value ranges from 0.849 to 0.904 Mev/gm/cm². The predicted value as given by section 3.b(3) is 0.881 Mev/gm/cm². This is an indication that the calculational method is correct.

Figures 3, 7 to 3, 17 contain the energy and angle of emission spectra for 25-Mev electrons for thicknesses in the range from 0,01 to 10 gm/cm². The energy spectrum is a plot of the number of secondaries escaping per incident electron as a function of the energy of escape.

Figure 3. 18 is a plot of all the energy spectra as a relative perspective of their intensities as a function of thickness. The intensity

increases with thickness in general. The most probable energy of escape $E_{\rm e}$ occurs at about 0.15 Mev for almost all the thicknesses.

Table 3.1 $\hbox{Critical Energy E_c and the Ratio of the Radiative Loss to the Ionization Loss for Various Materials }$

Materials	Z	E _C (Mev)	(dE_o/dx) rad (dE_o/dx) ion
H ydr og e n	1	340	0.0313
Carbon	ó	103	0.133
Aluminum	13	47	0.407
Iron	20	24	0.313
Copper	29	21.5	0.307
Lead	ქ2	٠.۶	2.570
Air	7.36	33. 0	0.230
Water	7.23	93	0.227

Table 3.2

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of
Thickness for 25 Mev Electron

T (gm/cm ²)	E _g (Mev/gm/cm ²)	E _d (Mev/sm/cm ²)	S _e (se/ie)	S _d (se/ie)
10.0	4.17-3*	8.45-1	4.33-2	4.67 + 3
5.0	2.55-2	ರೆ . 53 - 1	7.38-2	2.34 + 3
2.5	6.85-2	3.21-1	7.51-2	1.17 + 3
1.0	1.32-1	7.67-1	6.01-2	4.67 + 2
0.75	1.51-1	7.50-1	5.46-2	3.51 + 2
0.5	1.76-1	7.24-1	4.71-2	2.34 + 2
0.25	2.17-1	ó.05 - 1	3.56-2	1.17 +2
0.1	2.65-1	6.37-1	2.35-2	4.67 +1
0.05	3.00-1	6.04-1	1.63-2	2.34 +1
0.025	3,29-1	5•73-1	1.17-2	1.17 +1
0.01	3.66-1	5•35-1	7.06-3	4.68 +0

^{* 4.17} x 10-3

Table 3.3

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Emission and Thickness for 25 Mev Electrons

E* (Mev)	T = 10 cm/cm ²		T = 5 cm/cm ²		T = 2.5 cm/cm ²	2	T = 1 cm/cm ²	
	S _e (10 ⁻⁴ se)	θ (deg)	S _e (10-4 se)	θ (deg)	S _e (10 ⁻⁴ se)	θ (deg)	S _e (10 ⁻⁴ se)	θ (deg.)
0.05	25.44	61.35	25.370	64.03	25.130	66.62	27.010	70.01
0.15	3 .36	39.07	37,060	43.80	39.140	43.33	35.950	54.14
0.55	31.03	32.72	27.,10	39.39	28.310	64.44	27.640	L4.94
1.0	24.20	39.17	14.420	31.71	SC• 340	36.7)	16.440	39.74
2.0	6.3 73	32. 66	4.7.3	27.30	10.330	29.93	7.524	31.61
0.4		1 1	0.561	23.12	5.041	22.44	3.103	23.27
0.0	•	ł	:	ł	4.073	13.06	1.334	13.63
ဝ • ဗ	:	!	;	:	161.1	15.63	1.3%	15-55
10.0	:	;	;	ł	;	;	1.217	13.17
12.0	;	!			}	;	ì	;

*6E = 0.10 Mev

:

٠

Table 3.3 (Cont'd)

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Emission and Thickness for 25 Mev Electrons

	T = 0.75 cm/cm ²	cm ²	T = 0.50 gm/cm ²	cm2	T = 0.25 gm/cm	/cm ²	T = 0.10 gm/cm	/cm ²
E _e (Mev)	Se(10 ⁻⁴ se)	θ (deg)	Se(10-4 se)	θ (deg)	S _e (10 ⁻⁴ se)	(geb) 6	$S_{\mathbf{e}}(10^{-14} \frac{se}{1e})$	θ(deg)
0.05	26.350	71.16	26.440	71.73	26.200	73.14	26.990	74.65
0.15	37.610	56.54	37.290	57.69	37.63	60.68	35.140	63.50
0.55	26.680	47.70	24.140	48.77	19.47	50.16	12.570	51.40
1.0	14.670	94.04	12.920	41.08	9.075	41.98	5.115	45.69
2.0	904.9	32.03	5.229	32·3 [‡]	3.373	32.32	1.571	33.22
0.4	2.475	23.50	1.876	23.68	1.044	23.32	0.40	24.10
0.9	1.456	18.82	1.036	18.94	945.0	19.10	0.235	19.21
8.0	1.059	15.65	0.726	15.74	0.378	15.85	0.155	15.93
10.0	0.912	13.26	0.604	13.33	0.303	13.42	0.122	13.48
0.दा	:	!	•		0.143	94.11	0.112	91.49

Table 3.3 (Cont'd)

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Emission and Thickness for 25 Mev Electrons

,	T = 0.05 cm/cm ²	/cm ²	T = 0.025 gm/cm ²	1/cm ²	T = 0.01 gm/cm ²	cm ²
E _e (Mev)	S _e (10 ⁻⁴ se)	(geb) 0	Se(10-4 se)	(deg)	Se(10 ⁻⁴ Se)	θ (deg)
0.05	26.940	75.14	25.450	75.48	22.390	75.78
0.15	31.420	65.01	25.920	66.12	16.340	98.99
0.55	8.289	51.93	4.887	52.35	2,242	52.57
1.0	2.732	42.99	1.535	43.20	989*0	43.32
8.0	0.869	33.34	0.451	33.44	0.184	33.49
0.4	0.243	24.15	0.124	24.20	0.050	24.21
0.9	0.121	19.54	0.061	19.26	0.024	19.27
8.0	620.0	15.96	0,040	15.97	910.0	15.97
10.0	0.061	13.49	0.031	13.50	0.012	13.50
12.0	0.059	11.50	0.028	11.51	0.011	11.51
?	6000	06.11	0.060	-i	٠٠ كـــــــــــــــــــــــــــــــــــ	

Table 3.4

Number of Secondaries Which Escape as a Function of Angle and Thickness for 25 Mev Electrons

:	$T = 10gm/cm^2$	T = 56m/cm ²	$T = 2.5 \text{cm/cm}^2$	T = 13m/cm ²	T = 0.75gm/cm ²	T = 0.50gm/cm ²
* (deg)	Se(10-4 se)	Se(10 ⁻⁴ Se)	Se(10-4 se)	$S_e(10^{-4} \frac{se}{ie})$	Se(10-4 se)	$S_e(10^{-4} \frac{se}{1e})$
15	0.006	24.31	58.03	23.09	17.17	11.36
25	1.976	41.61	37.41	59.40	23.17	16.15
35	33.77	27.32	26.63	26.57	27.10	23.95
45	20.66	19.30	19.81	10.77	19.24	19.13
55	13.31	13.59	13.29	13.29	13.42	13.47
رَي	7.30	ය. දැ	3.17	ċ•33	6.25	₩.٢
75	3.66	3.72	3.75	3.71	3.71	3.61

. A - 20

Table 3.4 (Cont'd)

Number of Secondaries Which Escape as a Function of Angle and Thickness for 25 Mev Electrons

	T = 0.25gm/cm ²	T = 0.10gm/cm ²	T = 0.05cm/cm ²	T = 0.025cm/cm ²	T = 0.01gm/cm
θ (deg)	$S_e(10^{-lt} \frac{se}{1e})$	S _e (10-4 se)	Se(10-4 se)	$S_{e}(10^{-4} \frac{se}{1e})$	$S_{e}(10^{-4} \frac{se}{1e})$
15	20.5	2.241	1.12	0.56	0.224
25	3.11	3.277	1.64	0.63	0.330
35	14.00	5.709	2.36	1.42	695.0
45	13.31	10.01	5.51	2.31	1.129
55	12. %	13.60	10.77	5.37	2.392
65	7.35	7.61	7.44	6.56	6.413
75	3.61	3.72	3.68	3.61	3.625

Figure 3.1 Trajectories in the scattering plane for the incident electron E_0 , the scattered electron E^{\dagger} , and the secondary electron E. The momentum is represented by p

Figure 3.2 Energy groups for the 25 Mev electron program

Figure 3.3 The number of secondaries escaping S_{e} as a function of thickness for 25-Mev electrons

Figure 3.4 The number of secondaries deposited S_d as a function of thickness for 25-Mev electrons

Figure 3.6 The energy deposited per unit path length as a function of thickness for 25-Mev electrons

Figure 3.7 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.01 $\rm gm/cm^2$

Figure 3.8 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.025 gm/cm²

Figure 3.9 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.05 ${\rm gm/cm}^2$

Figure 3.10 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.10 gm/cm²

Figure 3, 11 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.25 gm/cm 2

Figure 3. 12 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.50 $\rm gm/cm^2$

Figure 3.13 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 0.75 $\rm gm/cm^2$

Figure 3, 14 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 1.0 $\rm gm/cm^2$

Figure 3, 15 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 2.5 $\rm gm/cm^2$

Figure 3, 16 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness 5.0 gm/cm²

3

Figure 3.17 Energy and angle of emission spectra for 25-Mev electrons incident on a sample of thickness $10~\mathrm{gm/cm^2}$

Figure 3, 18 Energy spectra for 25-Mev electrons for thicknesses in the range from 0.01 to 10 gm/cm^2

4. SECONDARY ELECTRON EMISSION BY A 600 KV PULSED X-RAY SOURCE.

a. General remarks

The remarks in this section concern a 600-kv Fexitron Flash X-Ray System manufactured by Field Emission Corporation, McMinnville, Oregon. The spectrum used for the calculations to follow was measured on the Fexitron located at Sandia Corporation, Albuquerque, New Mexico. It is capable of delivering 1200 megawatts in 0.1 μ sec with impulse currents of 2,000 amperes at 600-kv s iode potential.

b. Theory

The theory for this section shall be the same as section 2.b.

c. Procedure

(1) Energy groups

The Bouchard (1962) energy spectrum, figure 4, 1, measured at the Sandia Corporation 600-kv Flash X-Ray System was used to determine the weighting as a function of energy group. Table 4, 1 contains the energy groups and the spectrum weighting factors as taken from figure 4, 1.

The quantity E N(E) in table 4.1 is used in this section in the same context as N_m in section 2. c(1).

(2) Sample division

The sample division in this section is the same as section 2, c(2).

(3) Attenuation

The attenuation is the same as section 2, c(3).

(4) Sample problem

The calculations were done in a very similar manner to those

in section 2. c(4) except for different energy groups and weighting factors.

d. Results

The results are contained in table 4, 2 (Energy Losses and Secondary Electron Emission Efficiencies as a Function of Thickness for 600 KV X-rays), table 4, 3 (Number of Secondaries which Escape as a Function of Energy, Average Angle of Emission and Thickness for 600 KV X-rays) and table 4, 4 (Number of Secondaries which Escape as a Function of Angle and Thickness for 600 KV X-rays). The data contained in table 4, 2 can be found plotted on figures 4, 2 - 4,5, and table 4, 3-4, 4 data are in figures 4, 6-4, 7.

e. Discussion

Tables 4. 2 and 4. 3 contain the data from the computer. The results of these tables are plotted in figures 4. 2 - 4. 7.

Figure 4.2 gives the S_e versus the thickness. For small thicknesses the value S_e increases to a maximum of 5 x 10^{-4} and stays at this value over a large range of thicknesses. However, it begins to decrease for the larger thicknesses to a value of 2 x 10^{-4} at 10 gm/cm².

 S_d versus thickness forms a straight line on log-log paper, figure 4.3. It increases from 10^{-3} at 0.01 gm/cm² to 1 at 10 gm/cm².

The sum of figures 4.4 and 4.5 gives $8.08 \times 10^{-3} \, \text{Mev/gm/cm}^2$ for the energy loss by the incident beam which is a factor of three less than the total energy loss. Since we are only concerned with the high energy component this seems reasonable for 600 KV X rays.

In figures 4.6 and 4.7, one will find the energy spectra and angle-ofemission spectrum plotted. The angle-of-emission spectra were all almost the same value (see table 4.3); therefore only one is presented. In figure 4.6, the intensities increase with decreasing thicknesses in general. However, there is a striking difference in these spectra from the previous ones because these do not reach a maximum up to 0.05 Mev. The spectra are presented together so one can get a relative perspective of their intensities.

Table 4.1

Energy Groups and Weighting Factors
For 600 KV X-rays

hv _o (Mev)	$E N(E) \left(\frac{\text{Mev}}{\text{Mev} \cdot \text{cm}^2}\right)$
.0005	0.000
.0510	1.050
.1015	2.300
.1520	2.600
.2025	2.750
.2530	2.000
.3035	2.625
.3540	2.300
.4045	1.350
.4550	1.350
.5055	0.300
.5560	0 .2 50

Table 4.2

Energy Losses and Secondary Electron
Emission Efficiencies as a Function of
Thickness for 600 KV X- rays

T (gm/cm ²)	E _f (Mev/gm/cm ²)	E _d (Mev/gm/cm ²)	S _e (se/i y)	S _đ (se/i γ)
10.0	1.70-6	8.08-3	1.95-4	1.13 0
5.0	5.42-6	8.08-3	3.17-4	5.63- 1
2.5	1.37-5	8.08-3	4.04-4	2.81- 1
1.0	3-94-5	8.08-3	4.67-4	1.12- 1
0.75	5-37-5	8.03-3	4.80-4	8.39- 2
0.50	8.28-5	7.98-3	4.91-4	5.50- 2
0.25	1.69-4	7-93-3	5 . 03 -1 4	2.76- 2
0.10	4.29-4	7.69-3	5.11-4	1.07- 2
0.05	8.62-4	7.26-3	5-14-4	5.11- 3
0.025	1.72-3	6.39-3	5.13-4	2.30- 3
0.01	3.6 4-3	4.46-3	4.28-4	6.96- 4

^{* 3.51} x 10⁻⁵

Table 4.3

Number of Secondaries Which Escape as a Function of Energy, Average Angle of Emission and Thickness For 600 KV X-rays

		-						
e (Mev)	T = 10 gm/cm ²	a	T = 560m/cm ²		T = 2.5 cm/cm ²	Q.	$T = 1.0 \mathrm{gm/cm}^2$	8.
	$s_{\mathbf{e}(10^{-lt} \frac{\mathbf{se}}{1 \gamma})}$	θ (deg)	$\left \begin{array}{c} s_{e}(10^{-4} \frac{se}{1\gamma}) \end{array}\right $	de (de	Se(10 ⁻⁴ Se)	θ (deg)	S _e (10 ⁻⁴ 8e)	(gap) θ
.05	27.17	45.4	44.95	42.4	57.89	4.54	66.77	42.5
.15	13.01	40.3	20.3 2	40.3	25.41	40.3	29.44	40.4
.25	0.11	39.1	0.17	39.1	0.20	39.1	0.37	39.1
	$T = 0.75 \mathrm{gm/cm^2}$	1/cm²	$T = 0.50 \text{gm/cm}^2$	7 CEE 7	$T = 0.25 \text{cm}/\text{cm}^2$, E	T = 0.10 gm/cm ²	Sm S
• 05	90.49	42.7	70.26	42.5	72.07	42.5	72.55	42.6
.15	32.79	†* 0†	30.83	4.04	31.53	4.04	32.73	†.º0
.25	0.28	39.1	0.38	39.1	0.39	39.1	o. 38	39.1
	T = 0.05 gm/cm ²	/cm ²	T = 0.025 gm/cm ²	gm/cm ²	T = 0.01 cm/cm ²	CH S		
.05	72.92	42.7	72.67	43.0	57.49	43.3	ı	
.15	32.93	†*0 †	33.00	†*0 †	30.75	†°0 †		
.25	&. %	39.1	o.32	39.1	0.26	39.1		•

Table 4.4

Number of Secondaries Which Escape as a Function of Angle and Thickness for 600 KV X-rays

$T = 0.50 \text{gm/cm}^2$ $S_e(10^{-4} \text{ se})$	16.32	51.02	30.18	3.%
$T = 1.0 \text{gm/cm}^2$ $T = 0.75 \text{gm/cm}^2$ $S_e(10^{-4} \frac{\text{se}}{i \gamma})$	15.80	50.10	29.43	3.80
$T = 1.0gm/cm^2$ $S_e(10^{-4} \frac{se}{i\gamma})$	15.65	43.69	20.59	3.71
$T = 2.5 \text{gm/cm}^2$ $S_e(10^{-4} \frac{\text{se}}{1 \text{ Y}})$	13.60	42.45	24.41	3°6
$T = 5.0 \text{cm/cm}^2$ $S_e(10^{-4} \frac{\text{se}}{1 \text{ y}})$	11.01	33.62	13.52	2.19
T = 10.0gm/cm ² Se(10-4 se)	7.22	21.09	10.84	1.14
в (дев.)	39	14	43	45

Table 4.4 (Cont'd)

Number of Secondaries Which Escape as a Function of Angle and Thickness for 600 KV X-rays

θ (deg)	T = 0.25gm/cm ² Se(10 ⁻¹ , se)	$T = C_* \log m / cm^2$ $S_e(10^{-l_1} \frac{se}{i\gamma})$	$T = 0.05 cm/cm^2$ $S_e(10^{-4} \frac{se}{i \gamma})$	$T = 0.05 \text{gm/cm}^2$ $T = 0.025 \text{gm/cm}^2$ $T = 0.01 \text{gm/cm}^2$ $S_e(10^{-14} \frac{\text{se}}{\text{i} \gamma})$ $S_e(10^{-14} \frac{\text{se}}{\text{i} \gamma})$	$T = C.01gm/cm^2$ $S_{\mathbf{c}}(10^{-14} \frac{\text{se}}{\text{i} \Upsilon})$
જ	16.67	16.76	16.83	16.44	4.57
14	52.22	53.20	53.45	53.57	43.75
713	31.01	31 53	31.70	31.78	31.97
54	60*4	4.19	4.19	4.20	7.50

Figure 4. 1 Energy spectrum from 600-kv flash X-ray machine as a function of photon energy

Figure 4.2 The number of secondaries escaping Se as a function of thickness for 600-kv X rays

Figure 4.5 The energy deposited per unit path length as a function of thickness for 600-kv X rays

Figure 4.6 Energy spectra for 600-kv X rays for thicknesse; in the range from 0.01 to 10 gm/cm²

Figure 4.7 Angle of emission spectrum for 600-kv X rays.
The numbers 10, 5, 2.5 etc., are thicknesses in gm/cm²

5. ASSUMPTIONS AND PERCENT ERRORS.

- a. Low-Z materials were assumed (A = 2Z), that is, materials where the atomic mass is equal to two times the atomic number. However, these calculations apply for materials where atomic mass is not identically equal to two times the atomic number because there is a cancelling effect on atomic number and atomic mass because of the range-energy relationships used. There is essentially no error involved.
- b. Interactions are described by straight-line motion using semiempirical range-energy curves for aluminum. This is not considered to be an error of any consequence for low-Z materials. However, it would be better to make the calculations for the range-energy curves for whatever material is being used.
- c. The angular distribution was taken into account assuming elastic collisions with the incident particle and the atomic electrons. No error is anticipated.
- d. Attenuation of the incident beam was also evaluated and included in the calculations. No error is anticipated.
- e. Plates were used which are thin (0.01 to 10 gm/cm²) compared with the range of 25-Mev electrons (13 gm/cm²).
- f. Only secondaries (delta rays) produced by the primary electrons are considered. Thus the low-energy secondary electron ionizations, which are proportional to the total number of low-energy electrons produced have been ignored. The error here is very small; and the best calculation is about 3 4 percent.
- g. The integral of the cross section for production of a secondary electron times the probability for escape from the surface has been calculated, assuming the latter to be proportional to the range of the secondary. No error is anticipated.
- h. The atomic electrons have been assumed to be free (kinetic energy after the collision is much greater than the binding energy) and stationary (the kinetic energy before the collision is much smaller than the kinetic

energy after the collision). No error is anticipated.

- i. The density effect was not taken into account. Each atom was considered as an isolated event with no interference from other atoms in the neighborhood. In other words, the collisions were considered as close collisions. No error is anticipated.
- j. The Compton interaction was assumed to be the predominant mechanism for energy loss in the prompt fission gamma and 600-kv X-ray calculation. The error is negligible for prompt fission gammas; however, the photoelectric effect should be included for higher Z materials in the X-ray calculation.

6. RESULTS.

A summary of some of the most important results is given in table 6.1. As can be observed from this table, the secondary electron emission efficiency for 600-kv X rays is 0.05 percent with the prompt fission photon efficiency approximately an order of magnitude greater and the 25-Mev electron efficiency about two orders of magnitude greater.

The energy losses by the incident photon beams are approximately the same and agree very well with the predicted value. The energy loss by the incident 25-Mev electron beam agrees almost identically with the predicted value. The energy loss by the 25-Mev electron beam is about a factor of five greater than the energy losses by the photon beams.

The number of secondary electrons deposited per incident particle S_d is 1 for the two photon beams but 4,600 for the 25-Mev electron beam. This indicates that the electron beam has a stronger tendency to produce low-energy secondaries that do not escape.

The energy and angle-of-emission spectra are given in the various sections.

The results of this paper give the experimenter the basic parameters necessary for comparing the transient radiation effects on electronic components for various types of radiation fields. With a slight modification of the results, one can plot curves for the proper dose for irradiating a sample

Table 6.1

Summary

Quantity	Prompt Fission Photons	25 Mev Electrons	600 KV X-rays
Se max (se/i particle)	0.35	8,5	0.05%
S _d at 10 cm/cm ² (se/1 particle)	1.0	7600	1.0
$E_{f L}$ max $({f Mev}/{\it gm/cm}^2)$	0.170 per fis. (0.126)	0.493 (0.831)*	0°0000
Ee Most probable (Mev)	0.15	0.15	< 0.05

* Predicted Value

with the machine to give the same effects one would expect from a prompt fission gamma radiation field. In this way one is able to properly simulate in the laboratory the effects expected in a nuclear environment, since an important part of a nuclear environment is the prompt fission gamma radiation field.

7. CONCLUSIONS AND RECOMMENDATIONS.

An accurate method has now been established for determining the secondary electron emission efficiencies as a function of energy of escape, their angle of emission, and many other basic parameters for comparing different radiation fields for transient radiation effects work in the laboratory.

It has been found that the secondary electron emission efficiency for 25-Mev electrons is 8.0 percent followed by the prompt fission gamma efficiency of 0.3 percent and finally the 600-kv X-ray efficiency is 0.05 percent.

The energy spectra were about the same for all three types of radiation fields with respect to their intensities. The shapes were approximately the same for 25-Mev electrons and prompt fission gamma. However, the 600-kv X-ray spectra did not reach a maximum down to 0.05 Mev.

Since these are basic parameters, they will be useful in many ways. The individual experimenter is left the task of adapting these parameters to best fit his needs. For example, if one is interested in keeping the secondary electron emission efficiency the same for his laboratory radiation field and for a nuclear environment, it will be necessary to plot a curve relating these parameters. On the other hand, if an experimenter is interested in keeping the energy deposited equal, another curve can be plotted, etc.

The 600-kv X-ray calculation should be used only for low-Z material because no photoelectric effect was considered.

APPENDIX A

PROMPT FISSION GAMMA PROGRAM

This appendix contains the computer program and a sample printout for prompt fission gamma radiation from U²³⁵ fissions. The program was written for the CDC 1604 high-speed digital computer at AFSWC.

```
COMMON T.PT, RATIO
     DIMENSION 0(130).W(130).C(136).A0(130)
     CALL FYHEON
     T=-1./.5762
     CALL PROB
     RATIO=PT
     CONST=0.30125
     ACC=.5
     ACC1 #1! -ACC
     ACCP#1:=ACC#.5 · · ·
     ACC3#.5/ACC2
     READ 3, TT
700
      IF (FOF $ 44,701
     PHINT 1.TT
701
     RSTART±TT+ACC2
     DELHRI-TT+ACC----
     XP97=010
     DO 60 11=1,125
     0:0=0:0
     0:0=(L)W
      . n=(L) UA
     C(J)=0:0 - -----
66
     K = 0
     0=XI
     SUMF #U.0
     SEL=0.n
     SEDP#U!O
     SUMI #J-8-
     SUMPRU:B
     READ S, E1, F2, EN
     1×=1×+1
      18 (ENF) 20,5
     F=(F1+F2)+.5
     SUMF=SHIP++FN .-
      A=E/.511
     A11=1.n+4
     A12=A14+A
      A13=A12+A
      A121 =LnGF(A12)
     SIGmm.49896+(A1)/A/A+(1.0+1.0/412-A12L/A)+A191/(A+A)-A13/A12/A12/A12}-
     SIGA=.44896+(2.+A11+A11/A/A/A12-A13/A12/A12-A11+(2.+A+(A-1.0)-1.0)
    1/A/A/A18/A18-4.0+A+A/3.0/A18/A18/A18-(A14/A/A-0.5+0.5/A/A)/A+A18L)
     EHAH#E&SIGA/SIG
     IF (FRAR-F.4) 7,6,6
     RHAP#.351*FBAR-.0702
     60 TO 8-
     RHAF=.273+(FBAR++(1.265-.0954+) OGF(EBAR)))
     SE=CONST+SIG+EN
     DELFEDELRST
     N=1
     R=HSTART
     SSDeff.n ...
     SSL=n-n
```

	EDP=0.0				
	EL=n.0				
	AL =F/.510984				
•	COSTH=11.+AL)+SORTF(SIG	//SIGA+AL+2.	+SIGI/AL)	
	THETA=ACOSF (COSTH)+57.29	57795			
	-AL PHA=RHAR+ . 5762				
	IF(5E) 17,17,9				
	T=(P/ChSTH-RBAR)/ALPHA				
9		•	••		
	T1=T				
	CALL_PRUP	* * *-	- •		
	PE=PT				
	-TIO=EXPF(CONST+SIG+(P-T)	· }-}			
	SI =SE*PE*DFLR*TIO				
-	SD=5F+t1PE)+DELR+TIO		* *** * *		
	PXE=.5+PE				
	DELX=1:				
	IF(SL-Y.F-20) 10,10,11				
	RSTANT+HRTANT+ACC1				
• •	XPQ7=XPU7+DELRST				
	DELPRI = DFLR6T+ACC1				
	GO TO 500				
44	T=T+DE('X				
53	CALL PROB	****			
	 F(PT -P XE)-12 ,13,₁₁				·
12	T=T-DE X				
•	DELX=DFLX+.5				
_	IF(1.E-6-DFLX) 11.11.13				
93	RLBAH={T-T1}+ALPHA	·- ·			
	IF(RLBAR=.77) 14,15,15				
	- 8= Fypf + 44 . p65-80RTF 44 . 6-	-,, 34 <u>1 4++ 06F</u> (R	FBYBY: 51	3) 	4 }
	80 TO 16				
- 15	B=(FLBAF+.0702)/.351		-		
16	XQ=\$1.*A				
	J=X1NTF(R+10.)+1				
	0(J)#Q(J)+1.				
				···	
	C(J)=C(J)+SL				
	J=XINTF(THFTA+,5)+1				
	A0(J)=AU(J)+BL				
	EL=FI +yū				
	FDP: FDP+SE+EBAR+NELR-XQ				
	-68L=8SI-45L				
	SSD=SSN+SD			·····	
	•				
500	R=R+ACC1	•		•	
	DELR-UPLH+ACC1				
	IF(R-5:F-4) 2000,2000,9	** ***			• •
500 t	60 TO (2001.17) .N				
	· N=5				
	R=R+ACC3				
	DFLROR+2.				
	GO TO #				
17	SIMI #SIML+95L	~	•		
•	XFQ=9E+XPQ7				
	- BBD-RSD+XPO				
	EDP=FUP+XPQ=EBAR				
	SUML-SUMD+98D				
	Antification 1988		-		

```
SEDP#SEDP+FDP
     SEL=SEI +EL
      IF(1Y-24) 19,18,18
     PRINT 1.TT
18
     -XXXESUMI./SUME
      XXY=5UMU/SUME
      PRINT 2, F1, E2, EL, SEL, EDP, SEDP, 99L, XXX, SSP, XXY
      GO TO 4
      CONTINUE
20
      PRINT 1.TT
      DG 43 3#1+130 --
      IF(n(J)) 43,43,39
59
      K=K+1
      FJ=J=1
     X=FJ/18.
      Y=X+.1
     XX=(X+[65)+C(d) ------
40
      Z=#(J)/((J)
      PRINT 506, X, Y, C(J), 7. XX
41
      IF (xMOnF (K, 25)) 43.42,43
42
      PRINT 1.1T
      CONTINUE
43
     .K#8 .. . . ..
      PRINT 1.TT
      DO 50 1=1.50
      IF(AQ(3)) 50,50,51
51
      K=K+1
      X=J+2
    ....¥#X=2. ... ... .. ... ... ...
      PRINT 550, Y, X, AQ(J)
      IF(K-25) 50,50,52
52
      K=0
      PRINT 1.TT
50
      CONT INUF
      60 TO . 700 ....
44
      CONTINUE
      CALL TEMPOFF
      FORMAT(10X,2F10.3,F13.3,F11.2,F13.3/)
500
550
      FORMAT/110X,2F18.2,E13.3/1
      FORMAT(161)
600
4 .
      FORMAT(2F8.3,8F12.3/)
2
      FORMAT(2F5.0,F10.0)
      END
      SUBFOUTINE PROB
      COMMON T.PT.RATIO
      AJP
                M (1)
         STA
                  XX
        1 AC
                  C5
         STA
                  SIGN
         LDA
                  XX
         51 J
                  (4)
        1 DA
                  C2
11)
         STA
                  SIGN
```

		LAC		-		
				T		
		FTA		XX		
	(4)	FMU		XX		
		STA		X2		
		LDA		XX		
		-				
		-188		C3	······································	
		AUP	M	(2)		
		+ DA		C5		
•						
		FDV		X2		
•		STA		X55		• • •
		FMU		C4		
		FSH		C5		
				_		
		FMU		C6		
		FHU		X55 -		
		FAD		C5		
		FMU		C7		
		FMU		X55		
		- 684 -		65		···
		FHU		C8		
		FHU		X55	••	
		FAD		C5		
		FMU		C9	-	
		FMU		X22		
				. 65		
Annual Control of the				-		
		FHU		X25		
		FAD		C5		:-
		STA		ERF		
		1 AC	400 0	X5		
		STA		X2		
description as we have a supersistence of the second		STA		X2		tan-denis - idi - id-qupusimidika
		STA FNA	-	X2	-	tan dana - idi at ang makadanda
		STA FNA RTJ	-	X2 X2		
	•	ATA ENA LTA LTA		X2 X2 EXPF ERROR		
	•	STA FNA RTJ	···-	X2 X2		
	• · · · · · · · · · · · · · · · · · · ·	STA ENA RTJ PTJ FMU	··-	X2 X2 EXPF ERROR C10		
	• •	STA ENA RTJ PTJ FMU FDV	-	X2 X2 EXPF ERROR C10 XX	•	
	• •	STA ENA RTJ PTJ FMU FDV FMU	-	X2 X2 EXPF ERROR C10 XX ERF		
	•	STA ENA RTJ PTJ FMU FDV FMU FAD		X2 X2 EXPF ERROR C10 XX ERF G5		
	•	STA ENA RTJ PTJ FMU FDV FMU		X2 X2 EXPF ERROR C10 XX ERF		
		STA ENA PTJ PMU FMU FMU FAD RLJ		X2 X2 EXPF ERROR C10 XX ERF G5 (3)		
	(2)	STA FNJ FTJ FMU FDV FAD FAD RLJ I AG		X2 X2 EXPF FRROR C10 XX FRF G5 (3)		
	(2)	STA ENJ PTJU FDU FDU FAD FAC FDV		X2 X2 EXPF ERROR C10 XX ERF G5 (3) X2 D1		
	(2)	STA FNJ FTJ FMU FDV FAD FAD RLJ I AG		X2 X2 EXPF ERROR C10 XX ERF G5 (3) X2 D1 D2		
	(2)	STA ENJ PTJU FDU FDU FAD FAC FDV		X2 X2 EXPF ERROR C10 XX ERF G5 (3) X2 D1 D2		
	(2)	STA FNA RTJ FMU V FMU FAD FAD FAD FAD FAD FMU		X2 X2 EXPF ERROR C10 XX ERF G5 (3) X2 D1 D2 X2		
	(2)	STA- FTNJJUVUD- FMALGVD- FMIV FIIV		X2 X2 EXPF ERROR C10 XX ERF G5 (3) X2 D1 D2 X2		
	(2)	STAAJJUVUDARTIUVUDAGVAUVUB		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 D2 X2 D3 D4		
	(2)	STAAJJUVUDJAVDUVBURFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 D2 X2 D2 D4 D5		
	(2)	STAAJJUVUDARTIUVUDAGVAUVUB		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 D2 X2 D3 D4		
	(2)	STAAJJUVUD JGVDUVBUU FFRMUVBUU		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 X2 D1 X2 D2 X2 D4 D5 X2		
	(2)	STAAJJUVUD JGVDUVBUUD FFRMIND FFRMIND FFRMIND		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 X2 D1 X2 D2 X2 D4 D5 X2 D6		
	(2)	STAAJJUVUDJGVDIJVBUUDJGVBRARAMADUVBRARAMADU		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 D2 X2 D4 D5 X2 D5 X2		
	(2)	SERTIUVUD JGVDIVEUUD DUV		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 X2 D1 X2 D2 X2 D4 D5 X2 D6		
	(2)	SERTIUVUD JGVDIVEUUD DUV		X2 X2 EXPF FRROR C10 XX ERF G5 (3) X2 D1 D2 X2 D4 D5 X2 D5 X2 D7		
		SERTINUVUD JGVDIIVEUUDUUB FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPF ERROR C10 XX ERF G5 X2 D1 D2 X2 D4 D5 X2 D5 X2 D6 X2 D6 X2 D6		
	(2)	SERPERE REFERENCE OF THE SERVICE OF		X2 X2 EXPF ERROR C10 XX ERF G5 X2 D1 D2 X2 D4 D5 X2 D5 X2 D6 X2 D8		
		SERREFERENCE SERREFERENCE SERREFERENCE SERREFERENCE SERVENCE SERVE		X2 X2 EXPER ERROR X2 ERF G\$ 1 XD X2 D5 X2 D6 X7 D8 X7 D8 X7		
		SERPERE REFERENCE OF THE SERVICE OF		X2 X2 EXPF ERROR C10 XX ERF G5 X2 D1 D2 X2 D4 D5 X2 D5 X2 D6 X2 D8		
		SERREFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPER EXPE ERROR X10 X10 X10 X10 X10 X10 X10 X10 X10 X10		
		SERREFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPER EXPER C10 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2		
		SERREFFER IFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPER EXPE EXP EXP		
		SERREFFE SIFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPER EXPER C10 ERF C10 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0 X0		
		SERREFFER IFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		X2 X2 EXPER EXPE EXP EXP		

```
FAU
                    05
         FNIJ
                    ΧX
         FMU
                    010
(3)
         FMII
                    SIGN
         FAI)
                    CS
         FDV
                    RATIO
         STA
                    PT
      RETURN
         DEC
F2
         DEC
                    1.447705
C3
         DEC
C4
                    11.
         DEC
F5
                    1.
67
         DEC
                    9.
         DEC
C7
                    7.
67
         TFC
                    5.
         PFC
24
         DEC
C10
                    -.5641896
B1
         DEC
                    105.
         DEC
                    .07692308
D2
         DEC
P3
         DEC
                    .090909091
D4
         PEC
                    .2
n5
         TFC
Ð6
                    .11111111
        PEC
                    .25
P7
         DEC
ne
                    .142857143
         DEC
n9
                    .6
B10
         DEC
                    1.1283792
         RSS
SIGN
XX
         HSS
         FRS
#2
         RSS
X22
         RSS
FRF
FXPF
                    EXPE
         118
      SUBROUTINE TIMEON
         FNA
                 ----
                                           CLEAR ACCUMULATOR.
         FYF
                                           TEST CHANNEL 1 FOR ACTIVE.
                    00011R
         STA
                                           CLEAR CLOCK CONTENTS TO ZERO.
                    00000
1
         FYF
                    01000B
                                           START CLOCK.
      RETURN
      SURROUTINE TIMEOFF ---
         KOP
                                           DUMMY STATEMENT.
         FXF
                    000119
                                           TEST CHANNEL 1 FOR ACTIVE.
        . FXF
                                           STOP THE REAL-TIME CLOCK.
                    02000A
                                           CLOCK CONTENTS TO ACCUMULATOR. CLOCK CONTENTS TO *KLOCK*.
         LDA
                    00000
         STA
                    KLOCK
      TIME #FI DATE (KLOCK) /3600-6-
      PRINT 1.TIME
      RETURN
      FORMAT(11H1RUN TIME =F9.2,9H MINUTES.//)
      END
         ENU
         E NID
```

(Koy)	- <u>1</u>		-	P	1	•	•	0	
			(Mer)	(Kar	(K	(se/fis)	(se/AT)	(se/fis)	(41/28)
١.	1	2076- 5	1.207E-905	1.792E-806	1.7926-un6	2.362E-0.6	6.144E-003	2.3116-098	7.9666-005
7.06. 7	7.000	1,591E- :5	2-877E-015	2.654€-30€	4.649E-006	3.7086-006	8.797E-033	9.0926-0:6	1.373E-304
7.20. 7	7.4-:	3:2846-1.5	6.101E-005	0.116E-006	1.376E-005	7.931E-036	9.191E-103	1.148E-037	1.234E-004
7.06. 7	7.2.	3:94165	1.040E-034	7.439E-006	1.82.E-005	9.619E-0.6	9.336E-363	1.4716-8:7	1.328E+004
6.80. 7	7.2.	3.393E5	400-865E-1	6.839E-056	2.5036-005	8.823E-0.6	9.450E-003	1.4306-007	1.396E-004
İ	i	2.957E5	1.639E-004	6.238-006	3.1296-005	7.997E-306	9.565E-583	1.3766-067	1.458E-004
360.0	,	3:1006- 75	1.994E-104	6.991E-0u6	3.8246-009	8.973E-0:6	9.67 E-303	1.649E-657	1.529E-034
6.20:		3:942E- :5	2.3.0E-094	6.131E-0.6	4.637E-005	1.0406-005	9.795E-303	2.047E-0:7	1.614E-004
.00.	6.2.3	5; 814E- 15	2.849E-004	1.300E-035	6.336E-0n5	1.705E-0u5	9.97 JE-583	3.7736-0£7	1.75 uE-004
9.80		7:76765	3.606E-034	1.963E-005	7.999E-005	2.495E-035	1.017E-002	5.695E-007	1.916E-004
9.0.	9.9	. 110E4	4.749E-534	2.077E-0.5	1.398E-264	3.7696-0.5	1.0406-002	9.327E-047	2.124E-004
1	9.6	. 300E .	0.120E-0.4	3.7796-005	1.475E-0c4	4.7598-305	1.0626-002	1.2046-9r6	2.346E-004
5.23.	5.4.8	.: 556E4	7.0046-034	4.5706-005	1.933E-ac4	9.794E-0u5	1.0636-302	1.7136-0:6	2.584E-004
9.00.6	5.8	1 2	9.132E-604	4.9196-005	2.309E-004	5.691E-309	1.1016-002	1.8566-0-6	2.808E-004
	0.0.0	-, 2026 4	1.341E-003	4.201E-035	2.8116-304	9, 338E-au	1.117E-002	1.9346-836	3.027E-004
4.035		.: 797E 4	1.2816-0-3	6.379E-835	3.440E-UC4	7.9496-0.5	1.130E-302	3.2236-0:6	3.3636-004
100.0		2:7:264	1.4416-003	1.,236-004	4.4716-694	1.272E-004	1.1696-002	5.8216-356	3.8726-804
4.23:		3.23.6- 4	1.0126-0.3	1.3.96-034	9.776E-004	1.6146-064	1.1936-602	1.424E-006	4.469E-884
* :::•		3:45364	2.1v6E-003	1.692E-0.4	7.468E-464	2.070£-0u4	1.222E-002	1.2516-005	5.194E-804
3.63.		4:3206- ,4	2.03uf-Li3	2.119E-634	9.963E-:04	2.533E-004	1.240E-302	1.8036-015	4.076E-004
3.69.	3.8.3	5: 262E4	1 3.197£-063	2.020E-C34	1.2416-003	3.3306-004	1.276E-902	2.6226-0-5	7.223E-004
3.43.	3.0.0	5:7306- 4	1 3.730E-063	3.4216-634	1.5636-003	3.9696-364	1.304E-382	4.056E-005	9.668E-084
3.20.	3.0.0	•. •§ €• .•	4.3796-063	4.320E-004	2.8196-903	4.003E-0:4	1.3306-462	6.172E-095	1.040E-083

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5.0456-003 6.7866-003 7.8156-003 1.00.96-003 1.1116-002 1.1116-002 1.30.86-002 1.406-002	7.1026-004 9.0.3E-004 1.2626-003 1.7126-003 2.2 26-003 2.0.6E-003 3.1466-003 9.0206-003	3.236=-0.3 3.236=-0.3 4.2376=-0.3 5.506=-0.3 7.22,6=-0.3 1.20360.2 1.51760.2 1.51760.2 3.47,60.2 3.47,60.2 3.47,60.2	7.55216-004 7.5526-004 1.1916-003 1.4306-003 1.6256-0.3 1.6256-0.3 1.6256-0.3 1.6256-0.3 2.5946-0.3 2.5946-0.3		8.662E-004 1.569E-004 4.579E-004 1.302E-003 1.950E-003 3.496E-003 4.199E-003 4.239E-003	1.2026-003 2.0756-003 2.0756-003 2.7316-003 3.6376-003 4.8276-003 7.6416-003 1.2356-002 1.8226-002
	6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	* * n n n n n * n *	9.006E-003 7.015E-013 1.116E-013 1.116E-012 1.302E-012 1.302E-012 1.402E-012		3.236E-003 4.217E-003 7.22.E-003 7.22.E-003 1.203E-002 1.517E-002 1.906E-002 3.142E-002 3.142E-002	7.559E-064 1.191E-053 1.629E-0.3 1.629E-0.3 1.629E-0.3 1.824E-0.3 2.594E-6.3 2.594E-6.3			2.5756-003 2.7316-003 3.6376-003 4.6276-003 6.2266-003 7.8416-003 1.2356-002 1.8226-002
	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* n n n n v n *	2.9826-0.3 2.9826-0.3 3.0.96-0.2 3.238-0.2 3.3.26-0.2 3.4.96-0.2		4.217E-003 9.508E-003 7.22.E-003 1.203E-002 1.517E-002 1.908E-002 2.47.E-003 3.142E-002 3.47.E-003	1.191E-0.3 1.430E-0.3 1.629E-0.3 1.629E-0.3 1.924E-0.3 2.594E-0.3 2.594E-0.3			2.075E-003 2.731E-003 3.637E-003 4.627E-003 7.641E-003 1.235E-002 1.922E-002
	2 2 2 2 2 2	n n n n v v v	7.8156-643 1.0.96-602 1.1116-002 1.3.26-002 1.4.96-002 1.4.96-002		7.526-103 7.22.6-103 9.428-103 1.5176-102 1.9176-102 2.47.6-102 3.1426-102 3.1426-102	1.926-0.3 1.6256-0.3 1.6256-0.3 1.6236-0.3 1.8246-0.3 2.5946-0.3 2.5946-0.3			2.731E-003 3.637E-003 4.627E-003 6.286E-003 7.641E-003 1.235E-002 1.922E-002
'	1 1 1 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	n n n n • n •	1.0.500 1.1.116 1.1.11		7.22.6-003. 9.4236-003 1.2036-002 1.5176-002 1.0066-002 3.1426-002 3.1426-002	1.625E-0.3 1.625E-0.3 1.625E-0.3 1.924E-0.3 2.594E-0.3 2.514E-0.3		1	3.637E-003 4.627E-003 6.226E-003 7.641E-003 1.235E-002 1.522E-002 1.825E-002
!	38.0000	n n n a n a	1,0,9E-002 1,111E-002 1,212E-002 1,3,2E-002 1,49UE-002		1.2036-903 1.5036-902 1.5176-602 1.0006-902 3.47.6-002 3.1426-002	1.025E-0.3 1.005E-0.3 1.025E-0.3 2.594E-0.3 2.594E-0.3 2.514E-0.3			4.627E-003 9.226E-003 7.641E-003 1.235E-002 1.922E-002 1.825E-002
	36.00	n n a n a	1.3.2E-0.2 1.3.2E-0.2 1.3.2E-0.2 1.4.9E-0.2 1.4.9E-0.3		1.513E-002 1.517E-002 1.000E-002 2.47.E-002 3.142E-002 3.142E-002	1.824E-0.3 1.824E-0.3 2.994E-0.3 2.914E-0.3 2.914E-0.3	1.272E-302 1.209E-502 1.129E-502 1.019E-503	!	9.226-003 9.001E-003 1.235E-002 1.822E-002 1.825E-002
		n	1.212E-0.2 1.342E-0.2 1.445E-0.2 1.445E-0.3		1.517E-662 1.886E-662 2.47.E-62 3.142E-562 3.054E-662	1.923E-0.3 1.924E-0.3 2.594E-0.3 2.014E-0.3	1.20%-502 1.120%-002 1.019%-502 9.017%-303		7.841E-003 9.861E-003 1.235E-002 1.522E-002 1.825E-002
1.03. 1.0		* n *	1.3.2E-002 1.4.5E-0.2 1.4.9E-0.2		1.888E-UC2 2.47.E-LC2 3.142E-CC2 3.054E-CC2	2.594E-0.3 2.614E-0.3 2.614E-0.3	1.120E-002 1.019E-602 9.017E-503		0.061E-003 1.235E-002 1.522E-002 1.625E-002
2.45. 2.0.	. 9.319E-	7	1.4-96-0.2 1.4-906-0.2		3.1426-502 3.1426-502	2.5946-0.3 2.6146-0.3 2.2726-0.3	1.019E-602 9.017E-503	1.2396-0 2	1.235E-002 1.522E-102 1.625E-002
Rul 1.0.	92	•	1.4 VUE-012	1 1	3.1426-002 3.8546-002	2.272E-0.3	9.017E-303	1.2396-0 2	1.5226-302 1.6256-002
1.60. 1.2.	e, 448		1.547F-12	7.1146-033	3.854E-ur2	2.272E-0.3			1.825E-002
.00. 3.220	- 9267.9 g						7.864E-303	1.757E-0-2	
, 40 , 00.	967.	÷.	2:0-3046.:	0.217E-633	4.775E-002	2.373E-0,3	6.527E-003	3.271E-002	2.245E-002
.430.3	2:207	E4	1.6136-012	1.,63E-0u2	5.838E-L.2	1.9536-6.3	9.042E-303	6.132E-002	2.797E-002
.22.	.3 52037E-	'n	1.6186-002	8.564E-033	6.694E-UC2	8,961E-354	3.779E-003	1.0546-001	3.487E-002
. 63	: 4.177E-	1	1.610E-032	2406-003	6.899E-1-2	7.684E-966	2.952E-003	1.484E-031	4,345E-002
,			' 1						
- -									

$\mathbf{E_{L}}$	Eu	Se	θ AV	E _{AV} Se
(Mev) • Ut	(Mev) •1	(se/iy) 1.674E≈0⊍3	(deg.) 40,32	(Mev·Se/iγ) 8.371f-005
•10	.2 ·	3.054E-0U3	36,99	4.581F-004
• 2 u	43 ··	4.094E-0u3	34,37	1.024F-003
	···· • 4 13 ··	3.414E-003	32,86	1,195F-003
• 4 ប	.5.,	3.258E-003	31,23	1.466E-003 ····
.50	. .6 ઇ ⋯	1.820E-003	28.80	1.001F-003
		1,328E=0#3	29,29	8,631F-004-
•7 0 ·	: .84	1,8395-003	27,99	1.3796-003
• 8 tj · ·	↓9 υ ··	-1,328F-003	26,71	1.128F-003
	-1.6.,	912E-0U4	25,98	8,466F-004
1.00	1.17	4.214E-004	- 24,86	4,425F-004
· · 1.10 · · ·	1.27 -	₩,462E-0U4	24,48	9.7326-004 ·····
1000	-1+3		23,66	7.874F-004
1,30	1.45	4,104E-004	23,12	5.540F-004
2.40	1.57	1.893E-004	22,28	2.744F-004
	-1.6+	-J.589E=0U4-	-21,96	5.562F-004
1 • 6 ti	1.7.	J.290E-0U4	21.44	5,428E-004
£.70	1.8,	9.881E-005	20.76	1.7296-004
	1.90	-1,732E-004	20.80	-3,204E-004
1.90	2.0 9	-1.811E-004	20.11	3,531F-004
2.00	2.1,	1.090E-004	19,75	2,235F-004
	2.2.	5.8 29E=uv 5	19 ₃ .19	-1,253f-004
2. 20	2433	1.100E=004	18,96	2.475F-004
2.30	2,49	7.9898-005	18,72	1.877F-004
	2.5n	>,652E-005		-1,305F-004

	$\mathtt{E}_{\mathbf{L}}$	$\mathbf{E}_{\mathbf{u}}$	s _e	$^{\theta}$ AV	EAVSe
	(Mev)	(Mev)	(se/iy)	(deg.)	(Mev·Se/iy)
	2,50	2.6	-4,664E=0U5	16,10	1,1896-004
	2.60	2.79	5.676E=005	17,66	1.5U4F-004
	2.70	2.8	2.057E=uu5	17,46	5.657E-005
	2.60	و. وج 2	2.921E-005	16;-99	-8.325F-085
	2.90	3.00	3.413E-085	16.88	-1.007F-004
	0 • UT	3.17	-1.222E-005	16.69	3.728F-005
. Ly advisable of			1.964E-0U5	16::26	-6.100E-005 .
	8.2g	5.3	-2.140E+005	16,13	-6.957F-005
	3. 30	3 + 4 "	1.5486-005	15.98	- 5.186E-005
·	-3.4 ₀	3 ₁ 5	-1.153E-0u5	15:39	-3.980E-005
	3. 50-	-3,6#		15,65	3,463E-005
	3,60-	. 3.7 m	-9.817E-006	15.34	3.5836-005
	- 3,70	3 ;8 r	-7,686E-006	14-92	2,882F-005
	3 ; 6 g ····	3 ; 9 -;	- 5.122E-006	15, u3	1.9726-005
	3.9 8	4 # 0 9	4.20UE-0U6	14,79	1.6596-009-
	-4.00			14:-70	1,166E-005
	4.10	4.2	4.2776-006	· 14 ,50	1,7756-009
	A.20	4 . 3 u	1.9006=006	14,45	8. U77E-006
	····4 • 3 g	4 ; 4 tj·	2,498E-006	14,21-	1; U87E-005
	4.40	4;50	2.9786-006	13,84	1.3256-005
	-		1,863E=006		8,567F+006
· - NAS-1-80 M-0					-2,823f-006
					5.7768-006
	-				2.346F-006
	·				
	4.90	5:0n-	2,336E+0U7	13,41-	1,157E-006

EL (Mev) 5.ut	E _u (Mev) 5.1	S _e (se/iY) 1.177E=uu6	θ AV (deg.) 12.υ5	E _{AV} Se (Mev· Se/lγ) 5,945f-006	-
5.60	5.7.	>.918F-007	12, 45	3,344F-006	
> . 8 0	5.9.	2.960E-007	12,45	1.732F-006	•
6.00	6.1	2.2256-007	12.05	1,346F-006	
6.10	6.2	7.421E-008	12,05	4.5641-007	
			-		a pro- an address and an analysis and
a company and a state of				and the second s	
					- gar - to the state of the same of the sa
	-	-			
A 11 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					
	CONTROL COMES SERVICE STREET, SER	or a constitutive with the second set in the contract of the second set in the second		automorphis — is described the original distribution of the original contract of the original co	
		, .			
***************************************			.	tar in the specific consistence of the specific control of the specific contro	
	-				. Fre days related

T=	0.500 ⁰ L	$\theta_{\mathbf{u}}$	Se	
	(deg.)	(deg.)	(se/iy)	
	12.00	14.00	2.3625-005	
_	14.00	16.00	1.643E-004	
	18.00	18.00	3.749F-004	
	18.00	50.00	9.564E-004	
-	2n.00	55.00	1.438F-003	The state of the s
	28.00	24.00	2.923E-003	
	24.00	26.00	3.054E-003	
	26.0n	28.00	1.685E-003	The second section of the section of the second section of the section of
	28.00	30.00	3.747E-003	•
	30.00	38.00	2.594F-003	
	32.00	34-00	2.614F-003	 Make over som en og ste stillerer om en sentenenenen i den stillhabet i den sentenene.
	3¥.00	36.00	2.272F-003	
	36.00	38.00	2.3736-003	
	4n.00	42.00	1.953E-003	A TO THE EXPLORED RESIDENCE STREET, AND ADDRESS OF THE STREET, AND ADDRESS
	42.00	44.no	8.961E-004	•••
	44.00	46.00	7.6865-006	•

APPENDIX B

25-MEV ELECTRON PROGRAM

This appendix contains the computer program and a sample printout for 25-Mev electrons from a linear accelerator. The program was written for the CDC 1604 high-speed digital computer at AFSWC.

```
COMPUN T.PT. RATIO
      OIMERSION A(130),8(130),0(130),A0(130)
      DIMERSION VEL (130). YEDP (130), XSSL (130), XSSD (130)
      ヒロリコとつ。
      RBAF 55= . 351 + 600 - . 0702
      ALPH 625=.5762+RHAH95
      ACC1=1.-ACC
      ACC2=1.-ACC+.5
      ACCEM.5/ACCE
      DELF1 = 101
      [XY=1U
      CONST = 130125
      HATTO=1 .
      T=-1./.5762
      CALL PROF
      RALIU=PI
      HEAD 41.TT
1
      1F(+(if) 40,2
      DO 3 J=1.130
      4(J)≥U_
      H(J) =0:
      C(J)=0
      40(3)=0.
      XEL(J)=U.
      YEDP(J)=U.
      XSSE(J)=0.
5
      . fa(L)deex
      KKK#U
      SENSE | 16HT 2
      RSTANT=T1+ACC2
      DELFSI=TF#ACC
       H=HSTART
       HELL # DELEST
       FL=n.
       nKK=+KK+1
       DELF=OFLF1
       T=(TI-P-FBAK25)/ALPHA25
       CALL PRUH
       ()=1
       PXE=11+.5
       Driveln.
       T=T+FFEX
       CALL PROF
6
       DELY = DEL x + . 5
       1F(11-PXF) 7,8,5
7
       Tatefiel X
       TF(1.H-0-DF(X) 6.6.H
       HI HAL- (T-111+ALPHA25
       60=C110AH+.070211.351
       40=11N1+(En.+00)
       行行プログロボアない
       160=1.71 62
```

1. 1

```
在2年に14.75
      rbP=1.
      SSD=0.
      551 = 1.
      1 AG=2/
      LIP=IXY=L
      SENSE I INHT 1
      61 = F 2
      F2=F1-1111 F
      SIG12=1206+0F(F+(TF0+1./41/E2+1./(E0-61)/(E0-62))
10
      FBAHF (F1+E2)/2.
      COSTMET.0200*EBAH/SCHTF(FBAR+(1.022*FBAH))
      THET A=400SF(COSTH)+57.2557795
      IF (FHAR-2.4) 12,41,44
      RHAF = . 351 * FHAR - . 0702
11
      GO TH 13
      REAL = . 274+(FHAR++(1.265-. 0954+LUGF(EHAR)))
12
      SEME UNSTASTG12+DELP
43
      ALPI- / = R5 - R+ . 5762
      T=(+/COSTH=RHAR)/ALPHA
      T1 = T
      CALL PRU-
      46:01
      14-.1=44
       Spast *Pu
       SL#SH#PT
       851.+581 +8L
       SSD=SSD+SD
       PXEs. 5+PT
       θΕίχ#10 •
       IF (~1 ) 14,14,15
14
       St=n.
       F=0.
       4(1)=A(1)-1.
       THET = 0 .
       60 10 21
       T=T+1 F1 X
15
       CALL PROS
       HELY=DELX+.5
       TF (1-1-PXF) 17.18.15
17
       TETHOLIX
       TF(+.f-t)=DF(X) 15,16,1A
       ALANGE(TOT1) *ALEMA
18
       TF (+1 HAK=.77) 19,20,20
       H=F)+F((1.265-SCHTF(4.6-.3H14+LUSF(RLBAH/.273)))/.1988)
 19
       60 10 21
       #=(#1 HAR+.0702)/.351
 20
       F=M1-1F(F,FHAR)
 21
       Affertate
       (OX=HAH=FAR)=(DX
       FL =FI +YII
       トリアェーリドナナロア
       K=180-X1: TF(EHAF+10.)
       メトじしゅうニストピイドシャズロー
       メトリト (ドシェ) モガや(ド)+メロブ
       XS91 (K)= 488L (K)+8L
```

12 1

```
(891-(K)=1881-(K)+9D
      J=X1011 (**16.1+1
      A(J) = A(J)+1.
      ATHHT+(U)+THETA
      の(ま) #じ(お) +$に
      1=X1" | F(THFTA+.5)+1
      \Delta(J(\zeta)) = \Delta(J(J) + S)
      1 1 12=1 [ 1+1
      TE (1 TP-15X) 25,22,22
      i IPan
55
      LAG=! AG+1
      IF (1 48-25) 24,24,23
      LAGEIL
23
      PRINT 42, TT, EU, DELE, PKK, R
      PRINT 43.E1.PE.F.XO.FL.XOZ.ENP.SL.SSL.SU'SSD
24
25
      1F(.1-F2) 9,9,26
26
      DELF=UFL-1/10.
      TF(.81-52) 4,9,27
27
      DELFOUFLE1/100.
       1F(.00021-F2) 9,9,24
28
      IF (SENSE LIGHT 1) 29,30
74
      H1 = 6 2
      F2=.000145
      11-L+#61-F2
      60 16 10
      PRINT 43,E1,PE,F,X0,FL,X07,ENP,SL,SSL,SD,SSD
30
      H=R+4CC1.
      DELH=DELH+ACC1
       16 (+=516=4) 31,31,4
       TECSENSE LIGHT 21 32,33 -
51
       H=H+ACCS
32
       DELF=R+2.
       50 TU 4
       PHILT 46.TT
33
       SELED.
       SERFEU.
       SUMI =U.
       Stieff #U.
       DO 35 J=1.130
       IF() 581 (a) + X89D(J)) 86,36,34
34
       FJ=131-J
       1 = 1 + 1
       E1=FU/10.
       ドシニトリー。ユ
       SEL#SEL+*EL(J)
       SEDI #SFDP(J)
       SUML = SUML + XSSL (J)
       CC) GESX+"MHE="IMHE
       PRIET 44,E1,F2,XFL(J).SFL,XENP(J),SEDP,X55L(J).SUML,XSSD(J).SUMD
       1F(1-25) 36,36,35
35
       1 = ()
       PHILL 40 TT
       CONTINUE
36
       1 = 1
       PRINT 40.TT
       PO 34 J#1,130
```

```
TF(A(J)) 39,39,37
37
      1,=641
      FJ=1-1
       v=Fa/10.
      Y=X+.1
      XX=(Y+_05)*((J)
       JEH(B)/A(J)
      PRIFT 45, X, Y, C(J), 7, XX
       IF(1-25) 39,39,34
38
      ( = 1)
      PR[5] 40, TT
39
      CONTINUE
      1.=0
      PHILL 46,TT
      PO 50 J=1,50
       1F(a((J)) 50,50,51
51
      1.=L+1
      Y=.j+/
      Y = X - 2.
      PRINT 55.Y, X, AQ(J)
       TF(1-25) 50,50,52
52
      L = 0
      PRINT 40,TT
50
      CONTINUE
      60 10 1
      CALL TIMEOFF
4 ()
      FORM (TYF10.0)
41
       FORMATTIMI, 10x3HT =FA.3,8H GM/JM2,5X4HEG =F9.4,5H MEV,5X6HDEG =
42
     1F7.4,6H FEV.,3X2HH(.12.2H)=E42.3,8H GM/CM2./.2(1X/))
43
      FORMAT (FR.3, FR.5, FR.3, AH12.3/)
44
       FORMAT(2F7.2,8F12.3/)
45
       FORMAT(10X.2F10.2,F13.3.F11.2,F13.3/)
46
       FORMA [ (1 1 1 1 1 1 X , 3 HT = FP . 4 , 9 H G / (C + 2 . / / / )
Kh
       FURNATUON, 2F10.2, F13.3/)
       FND
       BORFHUTINE PROB
       COMEON T.PT.RATIO
          1 I A
                     T
          4.19
                   M (1)
          STA
                      XX
          IAC
                      CS
          STA
                      SIGN
          LUA
                      XX
          41.0
                      (4)
11)
          LUA
                      C2
          STA
                      SIGN
          1 aC
                      T
          SIA
                      XX
(4)
          FNU
                      XX
          STA
                      X2
          THA
                      XX
          144
                      C3
                   F (2)
          4.18
          1 1)A
                      U.S
          FIJV
                      X2
          STA
                      X22
```

C4 C5 C6 X27 C5 C7 FRU FNB FFU X22 C5 C8 F 58 X22 FMU C5 FAU C9 FHU X22 168 C5 X22 FMH C5 FAU ERF STA 1 AC X2 X2 X2 EXPF STA **►**MA F I J LIH ERHOR. FMU C10 XX FMU ERF FMU SIGN STA ERF LDA C2 SIGN F41) ERF 51. J (2) X2 D1 D2 X2 D3 D4 D5 X2 X2 D8 x2 D9 C2 X2 C5 X2 C9 C5 XX D10 FNU SIGN C5 FAU 131 FIIV RATIO

```
PT
          51 m
       RETURN
          D+C
02
          DEC
                     1.647705
€3
C4
          DEC
                     11.
65
          DEC
                     4 ...
          DEC
                     9.
06
                     7.
C7
          HEC
          IFC
68
€9
          DEC
C10
          LFC
          DEC
- <del>D</del>1
                     .07692308
D2
          BEC
B3
                     .090909091
D4
          DEC
                     . 2
D5
          FIFC
D6
          DEC
                     .11111111
          H-C
97
                     .14285/143
          TIFC
D8
                     .6
89
          DEC
                     1.1283792
D10
          BSS
SIGN
                     1
XX
          BSS
X2 ..
          855
          ESS
122
                     1
FRF
          PSS
                     1
EXPF
          118
       FND
       SUBFOUTINE TIMEON
                                             CLEAR ACCUMULATOR
          ENA
                 -----000nu ··
                                             TEST CHANNEL 1 FOR ACTIVE.
=
          FXF
                     00U11R
                                             CLEAR CLOCK CONTENTS TO ZERO.
          STA
                     00000
          HXF
                                             START CLOCK.
                     01010R
       RETHIN
       END
       SUBMOUTINE TIMEOFF-
          MIT
=
          FXE
                     000118
                                             TEST CHANNEL 1 FOR ACTIVE.
          FYF
                                             STOP THE REAL-TIME CLOCK.
                     020009
          LPA
                     00000
                                             CLOCK CONTENTS TO ACCUMULATOR.
                     KLOCK
                                             CLOCK CONTENTS TO *KLUCK*.
       TIME #FUDATE (KLOCK) / Section
       PRINT 1.TIME
       RETURN
       FORMAT(11H1RUN TIME =F9.2.9H MINUTES.//)
1
       END
          FNU
```

			!	1		:										: 							i 						
ER.	2 N	4 :8:6= :2	A 2 A52	20120	1.239E-036	1.686636	2.237E-606	2.8016-136	3.4.4676	4.23E-136	4.651616	5.268E-136	5.935E16	6.591E- 36	7.2586-: 36	7.035E:0	8.624E-[36	9.325E-, 26	1.046-035	1.:77635	1.1516- 05	1.2266-635	1.3.3635	1.382E-(35	1.463E-(35	1.545605	1.630E-035	1.7166-005	
~	ν ^D .	4. 5805-007	4 1284-007		4.1/95-88/	4.4796-007	5.505k-007	5.644E-007	6. U27E-067	6.191E-007	6.204E-007	6.372E-807	6.464E-037	6.562E-007	6.666E-007	6.775E-CO7	6.869E-007	7.010E-007	7.137E-007	7.2716-007	7.412E-007	7.561E-007	7.7176-807	7.0026-007	0.055E-087	8.2376-007	8.429E-007	0.6326-907	
ő.	X 71	4.26350.05	A. 5245		1.2/VE-(00	1.752E-604	2.486E-604	3.888E-(64	3.8766-004	4.746E-504	5.645E-Fu4	6.547E-r04	7.451E-604	8.358E-EG4	9.267E-604	1.010E-03	1.11 UE-063	1.2026-063	1.2946-6.3	1.387E. 3	1.401E-603	1.5756-603	1.6706-503	1.765E-003	1.0616-003	1.9506-063	2.095E-003	2.1946-003	
K	, v	4.2636-605	# 0 4 4 4 C - 4		20/8-103	4.727E-005	6.556E-005	6-801E-005	7.8765-665	8.702E-005	8.997E-C05	9. 176-005	9.,4uE-005	9. f.67E-005	9.997E-005	9.1316-005	9.1685-005	9.200E-005	9.253E-635	9.301E-605	9.353E-005	9.409E-005	9.469E-005	9.533E-005	9-601E-005	9.673E-005	9.750E-005	9-8336-005	
E	P 77	7-0066-005	1.4.2E- 134	2	*00-3rd1**	2.844E-: 94	3,731£u4	4.6306-034	5.508E-Ju4	6,516E-cu4	7,472E-244	8.436E-ng4	9.391E-0c4	1.0366-: 03	1.1336-003	1.2306-, 03	1,3286-003	1,4276-1.03	1,5266-03	1.6266-603	1.7266-603	1.0206-033	1,0306-003	2.033E-033	2.1366-003	2.241E-053	2,347E-003	2,4536-003	
~	P	7. L. Oke 1.45	7.113E-119			7.399£-1.35	0.0756-035	8.9836-(.5	9.36-6-1.35	9.5; 36., 35	9.54 E-LJ5	9.5746-135	9.6128-1.5	9.653E+245	9.6996-LJS	9.748E-6.5	9.801£-1u5	9.658E-035	9.92.E-LuS	9.005E-u05	1. L. 58-1.34	1.0136-004	1.1216-044	1.5296-634	1.4386-604	1.047E-0.4	1.0576-034	1.1676-884	
CM/CM2. ER	(New)	4.5708=004	9. 99k-1.4		200	1.8554-013	6.949e-0.3	3.2046-003	4 956=603	5. 12k-0.3	5,653g+C13	6.868k+0.3	7.6158-0.3	8.737E-0.3	9.6526-0:3	1 56t-0.2	1.147kol.2	1.2364-012	1.326b-(.2	1.4156-0.2	1.9036-C.2	1.991k-0.2	1.879E-0u2	1.7006-012	1.8536-002	1.0306-0.2	2. 206-0.2	2.1126-062	
, 4 ¹ /	i ž	0.97.Est.JA	4.528E54			4.0506-1.4	0.044F4	7556 04	8.344E-1.04	9+864	9.410E4	9.34>£-134	9.c78E:4	9.214E. u4	952E+U34	907-3967-6	93454	9.045E-034	8.935E=U.4	9.000E-	8.843E=1.04	903-3 10-0	0.76.E4	0.723E-1.4	960-3089·	9.850E-US4	8.626E-ro.	8.598E-:04	
# F	r k	12.2.	12.1.			23.9.	11.0.	31.7.		1:.5	31.4	11.3.	11.2.	1:.1,	31.6.	т •		1.7	2	3 .9.	3.4.	1.3.	12.	2 .1.	38	1.93	•	12.0	
H	P W	36.5,	12.63	4.5		75.0	377	11.6	11.76	11.6.	32.5	11.4.	13.60	11.6.	11.1.	12.6	30.5.	10.4	30.70	10.00	10.5.	10.40	10.0	30.6	30.30	20.10	9.00	0.00	
															:	1		,			1	·							

3	•	8.572E+034	2.1976-002	7.6788-cu4	2.561E-003	9.916E-005	2.253E-003	8.845E-337	1.8046-035
7.0.6	1.5	8.549E=,J4	2.203k-ü.2	1. c. 96-c.d	2.4706-403	1.001E-604	2,3536-063	9.070E-007	1-895E-1.5
9.9	7.	8.528E+134	2.3666-302	1.1616-004	2.780E-033	1.0106-004	2.4546-003	9.3.6E-807	1.9886-:35
	3.0	8.55.E- 34	2.4536-032	1.1146-0.4	2.8926-383	1.020E-034	2.596E-003	9.556E-007	2.0846-035
.4.6	.2.	8.493E4	2.9306-002	1.1275-14	3.0046-003	1.315-034	2.6596-533	9.620E-007	2.1826-035
9.6.	•.1.	8.479€:4	2.0-3E-0.5	1.141E-004	3.1196-0.3	1.042E-004	2.763E-[u3	1.6106-006	2.203635
	8.	8.467E4	2.7.06-0.2	1.155F-uJ4	3.2346-0.3	1.0536-034	2.868E-n03	1. u39E-008	2.3676-035
	•	0.456E ;4	2.7926-3.2	1.17.6-004	3.3516-003	1-066-004	2.9756-363	1.0706-006	2.494615
, 6.	.0.	0.45 .E+L34	2.6778-3.2	1.1866-0.4	3.4746-043	1.678E-604	3. 383E-0.3	1.1036-006	2-5146-(35
6.63	4.7.	8.445604	2.9618+302	1.2636-1.4	3,5906-003	1-0926-034	3.192E-: U3	1.1386-036	2.718605
.7.		B. 641E04	3, 456-012	1.22 E-0.4	3,7126-003	1.106E-034	3,302E.cu3	1.1746-036	2.8356-005
. e.	.9.	8.44.1E-L.14	3,1356-302	1.2366-0.4	5.836E-003	1.124E-184	3.415E-Lu3	1.2136-006	2,9576-135
6.5	·.	8.441E-034	3,2146-0.2	1.257E-L.4	3,962E-003	1.136E-034	3.528E-003	1.2546-806	3.062E-035
	9.3.	8.445E- 34	3.4996-0.2	1.277E-us4	4.000E-003	1.152E-004	3.6436-003	1.2976-006	3.212E-005
9.3,	6.2.	8.453E=u34	3,3838-0.2	1.29664	4,2196-603	1.169E-004	3.7646-003	1.3424-000	3.3466-035
1.2.	1.1.	8.458E=034	3.460k-002	1.32.5-034	4.3516-033	1.1866-004	3.8796-003	1.390E-036	3,485605
, i.e.	4.	0.467E-L.4	3.9526-3.2	1.3428-004	4.485E-003	1.205E-334	3,9996-603	1.441E-006	3.629635
97.	7.9.	0.479E- 34	3.0378-0.2	3066-0.4	4.622E-1.3	1.224E-304	4.122E+003	1.495E-806	3.7786- ,5
7.9.	7.0	B. 493E=134	3,7226-0.2	1.3916-6.4	4.761E-633	1.244E-034	4.2466-383	1,953£-006	3.934E-005
7.8.	7.7.	8.51.E- J4	3.8.78-3.2	:.4176-0.4	4.003E-003	1.2656-004	4.373E-0.3	1.614E-000	4.:956-135
7.7.	4.	0.526g-c34	3,0936-462	1,4446-634	5.847E-303	1.2076-004	4.501E-LL3	1,679E-006	4.2636-035
7.0.	7.9.	8.549E-U34	3.9786-002	1,4725-304	5.194£-033	1.311E-004	4.632E-603	1.7496-000	4.438E-505
7.53		0.572E-634	4046-032	1.9026-0.4	8.345£-co3	1.3356-004	4,7666-003	1.6236-016	4.62.E-635
3	7.35	8.597E-264	4.1986-002	1.9346-034	5.490E-,u3	1.364E-004	4.9826-003	1.003E-000	4.811635
7.36	7.20	0.62-E-03e	4.2306-012	1.5466-844	5.6546-903	1.386E-004	5.841E-C03	1.9866-136	5.339E-035
7.20	7.1.	0.694E-634	4,3234-002	1.0018-0.4	5.815E-033	1.4146-304	9.182E-003	2.0796-006	5.2176-005

7.5.	7.6.	9.666E-034	4.4.96-062	1.0376-034	5.078E-303	1.4436-004	9.320E-003	2.1//E-000	9.435E
7.00		8.72vE-634	4.4076-002	1.6746-034	6.1466-003	1.4746-034	5.4746-003	2.263£-006	5.663E-135
	•:•	8.750E-034	4.9846-062	1.7146-034	6.317E-003	1.505E-004	5.6246-663	2.396E-006	5.903E-035
	6.7.	8.795E-: 04	4.672E-002	1.7556-604	6.493E-003	1.539E-034	5.778E-383	2.917E-006	6.155E-635
6.73	3.	0.037E-634	4.7606-002	1.7906-034	6.6728-033	1.574E-004	5.035E-003	2.4496-000	6.419E-: 35
, 0.0	6.9	8.88.E-634	4.8498-0.2	1.0456-034	6.857E-303	1.611E-J04	6.307E-503	2.790=-006	6.649E-235
4.0		0.927E 34	4,9396-062	1.8936-004	7.0466-633	1.649E-004	6.261E-003	2.043E-036	6.993E35
, • •	6.3.	8.975E=.04	5286-0.2	1.844E-0.4	7,2416 33	1.69uE-C34	6.430E-003	3,1.9E-006	7.3146-105
1	6.2.	920E-2.4	5.119k-0.2	1.9976-034	7.440E-6.3	1.7326-004	6.6846-6.3	3.269E-006	7.633635
0.k.	4.1	9.08.E04	5.209k-0.2	2.054E-0.4	7.646E J3	1.777E-004	6.781E-653	3.4846-006	7.981E-: 05
	,	926E4	5.3,18-0.2	2.133614	7.057E- J3	1.824E-034	6.9646-2.3	3.696E-036	8.351E- 35
ر و و	3.0	9.195E=4	5.393e=0.2	2.176E-u.4	9.075E-6u3	1-873E-004	151E- 3	3.027E-036	9.743E- :5
3.4.6	3.0	9.2508- 14	5.485E-0.2	2.2426-6.4	8.299E-1.33	1.025E-004	7.3436-0.3	4.1796-006	9.161E-035
5.e.	5.7.	9.32 E34	5.978k-0 2	2.3126-034	6.930E-033	1.980E-004	7.9416-003	4,4556-036	9.6.7E-0.5
	5.6	9.3878-04	5.6726-0.2	2.3856-004	9.769E-0J3	2.386-004	7,7456-603	4.757e-006	1.0.8634
5.6.	5.5.	9.4556-104	5.7676-0.2	2.464£-034	9,315E-1.3	2. 98E-034	7,9556-133	9.189E-666	1. 596-24
5.5.	5.4	9.529634	5.6626-0:2	2.9468-6.14	9.270E-,33	2.1635-004	8.171E- J	5.4546-336	1.114E4
5.4.	.8.8	9.6. E	5.9588-6.5	2.0346-1.14	9.533E-3L3	2.23JE-084	8.394Eu3	5.856E-JG6	1.1726- :4
9.3.	5.2.	9.68.6- 14	6. 55m-0.2	2.7276-0.4	9.8.8E-0.3	2.3126-034	8.625E-003	6.3ule-006	1.2356- 34
5.6.	9.1	9.76 E4	0.1538-L.E	2.826E-Lu4	1.0(9E2	2.378E-034	6.862E-033	6.7936-036	1.313E34
	9.4.	9.8436-0.4	0.2516-JUS	2.0316-use	1.030E-332	2.458E-064	9.108E-003	7.3396-000	1.577E-)4
	•	9.0506-14	6.35EB-6.2	3.436-0.4	1.000Eu2	2.943634	9.363E-(u3	7.0476-630	1.45664
3.	•	\$. \$ < E 3	6.458k+U.2	3.2036-1.4	1.1.46-062	2.6336-634	9.426E-0.3	8.6266-006	1.5426-,74
•	.7.	3+.116+3	t.952k+0.2	3.29 E-u.4	1.1336-1.2	2.729E-004	9.899E-0u3	9.386E-006	1.636E-: 14
	•	10.6.633	6.054k-g.2	3.4266-0.4	1.167E-032	2.8316-004	1. 310E-562	1.0246-005	1.7396-14
	4.9.	Bon-A. E S.	6.7576-902	3.9716-004	1.21.36-1.12	2.9396-004	1.0406-0.2	1.1236-005	1.8516-,34

4.93	? •	2.000E=003	6.0616-002	3.7276-044	1.240E-002	. 954E-004	1.070E-032	1.2286-005	1.973604
•		3. USUE-003	6.9696-032	3.8946-034	1,2796-002	3.1766-004	1.1106-002	1.3516-005	2.10694
4.30	4.2.	1. u. CE-033	7736-002	474E-3#4	1.320E-532	3-3076-004	1.143E-062	1.490è-005	2.257€-034
6.23	7.	1.J2E33	7.1796-0.2	4.2076-604	1.363E-032	3.446E-004	1.177E-002	1.6496-335	2.422E-394
7	3.	S. 816-003	7.2878-962	4.475E-004	1.4.7E-u52	3.595E-034	1.2136-0.2	1.8326-005	2.600E-104
2.23	3.9.	\$ 9 3E + : 03	7.3966-002	4.682E-1.36	1,4546-002	3.7546-004	1.251E-002	2.0416-005	2.61_E-u34
3.53	3.0.	1(56-003	7.9.6E-30.2	4.9276-554	1.5.36-0.2	3.9246-034	1.296E-02	2.284E-005	3. j36E-cg4
3.6	3.7.	616E-603	7.6186-032	9.177E-634	1.9556-002	4-100E-694	1.3315-532	2,565E-305	3.295E34
2.7.5	3.6	3.6. 1.129E-5.3	7.7316-002	5.46 E-L.4	1.61uE-3i2	4.301E-604	1.3746-0.2	2.893E-065	3.584E34
3.0	3.9.	3.139Em. ut	7.8454-0.2	5.760E-0.4	1.667E-, 32	4.510E-004	1.419E-562	3.278E-005	3.9126-524
	*.	B	7.9666-002	6.1(.E-us4	1.720E-002	4.7346-004	1.467E-0.2	3.7316-005	4.285£04
4.0	3.3.	161E-333	8764-0.2	6.664E-644	1.793E- J2	4.975E-034	1.516E-002	4.267E-035	4.711E-004
3,0,5	3,2.	8726-033	8.1936-0.2	6.856E-LU	1,862E-0.2	9.233E-604	1,5696-302	4,905e-005	5.242E-114
3.85	3,1.	3 84E=. J3	8.3116-0.2	7.2786-634	1.034E-032	9.510E-004	1.624E-002	5.6706-005	5.769E14
3.1	3.6.	\$.348-c.3	6.4316-0.2	7.7556-034	2,0126-032	5.807E-684	1.682E-602	6,5906-005	6.428E-: :4
3.56	2.9.	3. ce 3E 3	8.951k-6.2	6.281E-0.4	2.095E-U.2	6.125E-634	1,7436-02	7,7166-605	7.1996-14
. 6.5		1.212E- 33	8.0728-0.2	8.857E-C34	2,1636-302	6.464E-004	1.866E-0.2	9.068E-805	9.105E-u04
2.05	2.76	1.220E+033	8.7946-0.2	9.49.E=034	2.276E-332	6.826E-034	1.876E-U32	1.574E-004	9,179€-34
2.1.	2.6.	1.c26E33	8.617w-062	1.02.E-u.3	2,3606-002	7.2098-034	1.9466-502	1.2836-034	1. 466-:33
2.0 g	2.5.	1.231E3	9. 486-002	1.090E-033	2,490E-u32	7.614E-034	2,3246-542	1,537£-004	1.2E03
2.5	2.4.	1.2336-1.3	9.1036-015	1.1866-6.3	2.6.96-632	8.L376-084	2.189E-152	1.857£-064	1.305603
2.4.	2,3.	1,42263	9.285k-002	1.2966-433	2,7306-102	8.447E-104	2,189E- 32	2,286E-004	1.614E-193
2.33	2.2.	1.43063	9.4: 78-0.2	1.6.86-03	2,8796,32	8.887E-004	2.270E-132	2.0u5E-004	1.895E03
2.2,	2.3.	1.42.60.23	9.9286-0.2	1.9336-0.3	3,3326-032	9.324E-034	2.371£-002	3.4606-634	2.241E-[03
3.5	~	19963	9.6486-0:2	1.0746-433	3,21.06-342	9.750E-604	2,4696-012	4,293E-804	2.673E-333
2	1.9.	3 8 3£ - 1.3	9.7006-0.2	1.8326-43	3.3036-002	1.3156-633	2.9706-642	5.3496-004	3.2.56-::3

1.00 1.7c 1.00 1.7c 1.00 1.0c 1.7c 1.0c 1.0c 1.0c 1.0c 1.0c 1.0c 1.0c 1.0	343E-003	9.0036-002						
	1 1	9.883E+012				-		
	1		2.609E-003	3.984E-102	1.0526-003	2.6756-002	6.481E-004	3.6736-033
ļ		9.0076-862	2.2085-003	3.8056-002	1.085E-003	2.7846-032	8.346E-004	4.707E-033
1 1	1.6. 1.1896-033	1.1186-011	2.4316-003	4.0466-002	1.1166-003	2.0966-602	1.040E-003	5.7486-033
1	195E-003	1226-011	2.68:E-003	4,3166-002	1.1526-003	3.0116-602	1.2916-003	7.396-033
1	0 \$.072E-003	1336-061	2.96.6-033	4.6126-002	1.1966-003	3.1316-062	1.994E-003	8.633E-033
	1.040E-013	1.436-001	3.2796-003	4.9406-002	1.2556-003	3.2566-002	1.062E-003	1.26uE-632
1.32 1.2	1. 188E-103	1. 536-041	3.6926-0.3	5,305E-602	1.3226-033	3.3006-602	2.429E-003	1.302E:2
1.20 1.15	. 9.826E-604	1,.636-0.1	4.0916-003	5,7146-302	1.387E-003	3.527E-002	3.045E-003	1.6376-192
1.10 1.6	9.398E-634	1726-0.1	4.6156-0.3	6.176E-002	1.4396-063	3.671E-0.2	3.879E-003	1.99-E-r02
10° .a.4	L 8.947E-Lü4	1.081E-0u1	5.244E+103	0.700E-002	1.49uE-003	3.823E-002	5.L10E-0u3	2.496E-132
	4.01-3636-8 .	1.90t-061	0. 12 16 - 13	7.3.16-002	1.576E-003	3.9776-602	6.552E-0u3	3.151E-002
.6. 00.	7.962E-434	1. 906-0.1	6.983E-003	7,9996-032	1.680E-003	4.145E-002	8.777E-003	4.629E-002
30. 56.	C 7.280E+204	1.1096-001	0.2555-0.3	8.8256-0J2	1.747E-003	4.3236-0.2	1.221E-002	5.25uE-102
36. 00.	. 6.984E-034	1.112k-001	9.9746-003	9.822E-012	1.8465-693	4.5056-002	1.7736-002	7.023E-002
. 9e.	5.720E-604	1.1178-9.1	1.2465-112	1.1.76-301	1.956E-003	4.701£-002	2.7496-302	9.772E-002
H. 04.	4.726E-934	1,1226-001	1.6368-442	1.27 uE-J01	2. 6.E-003	4.907E-602	4.726E-032	1.45.6-001
.32u		1,1266-0,1	2.349E-0u2	1.5056-301	2-089E-033	5,115E-0u2	9.750k-032	2.425E-col
. 60	. 279E-634	1.1286-0.1	4.1.66-042	1.916E-001	2.092E-393	5.325E-002	3.0476-601	5.472E-C31
16. 24.	60- 4148- 03	1.1296-0.1	3.7.46-6.1	5.6236-031	1.3926-003	5.464E-002	3.499£ 602	3.545E 032

T =	•75uu	GM/CM2.	S _e	θ A V	E _{AV} S
	E _L (Mev)	E _u (Mev)	e (se/ie)	AV (deg.)	AV e (Mev se/ie)
	• 6 8	.1	2.685E+0U3	71.16	1.343E-004
	• 10	•2	3.7616-003	56,24	5.641E-0U4
	.20	.3	3,606E=0U3	54,33	9.0166-004
	.3€	.4.	3.3156-003	5u.92	1.1606-003
	.40	.5	3.001E-003	49.50	1,350E-003
	.56	. 6	2.668F-003	47.70	1.467E-003
	•60	• 7	2.342E=003	46.01	1.5226-003
	.70	. 8	2.092E-003	44,49	1.5696-003
	.80	. 9	1.876E-003	42.96	1.594E-003
	.96	1.0	1.664E-003	41.80	1.5806-003
	1.00	1.1.	1.467E-003	40.46	1,540E-003
	1.10	1.2	1.356E-003	39,38	1.56UE-003
	1.20	1.3	1.2486-083	38,29	1.560E-003
	1.30	1.4	1.121E-003	37,36	1.514E-003
	1.40	1.5	1.036E-003	36,43	1,502E-003
	1.51	1,6	9.203E-004	35,62	1.426E-0U3
	1.60	1.7	8.811E-004	34,77	1,454E-003
	1.70	1.8.	8.0u8E-004	34.06	1,4u1E-003
	1.8u	1.9	7.699E=004	33,29	1,424E-003
	1.9t	5.0.	7.014E=004	32.61	1.368E-003
	8. 06	2.1.	6.406E=004	32.03	1.313E-003
	2.16	3.2	>.996E-UU4	31,41	1,289E-003
	8,26	5.2	9.942E-004	30,78	1,337E-003
	2.3t	2.4	5.711E-004	30,20	1,342E-003
	2,4i	2.5	>,279E-UU4	29,74	1.2936-003
	2.5(1	3.6	4.612E-UÚ4	29,20	1.227F-0V3

2.60	2.7	4.449==004	28.75	1.179E-003	
2.76	2.8	4.2764-084	28,27	1.174E-003	
2.80	2.9	4.2796-004	27.77	1.219E-003	
2.90	3 . u	3,9286-004	27.37	1.159E-003	
3. 00	3.1	3.7156-004	26.96	1.133F-003	
3.10	3.2	3.5056-004	26,56	1.1236-003	
3.20	3.3	3.3386-004	26.20	1.085E-003	•
3.30	3.4	3.2266-004	25.81	1.0816-003	
3.40	3.5	3.154E=UÜ4	25.45	1.0886-003	
3.50	3.6	3.0276-004	25.10	1.0756-003	
3.6 (i	3.7	2.798E=u04	24.79	1.,216-003	
3.76	3.8	2.8u2E-u04	24,43	1.u51E-003	
3.86	3.9	2.675E=UU4	24.11	1. U3UE-003	
3.96	4.,	2.534E+UU4	23.81	1.001E-003	
4.06	4.1	2.475E-U04	23.50	1.002E-003	.,
4.10	4.2	2.429E-004	23,21	1.008E-003	
4.20	4.3	2.348E-004	22.92	9.979E-004	
4.30	4.4	2.272E-U04	22.64	9.882F-004	
4.40	4.5	2.1986-004	22.37	9.7796-004	
4.59	4.6	2.132E-004	22,11	9.702E-004	
4 • 6 ü	4.7	2.0596-004	21.85	9.5766-004	
4.70	4.8	1.9556-004	21.62	9.2885-004	
4.8(4.9	1.9526-004	21.36	9.467E-004	
4.96	5.0	1.8696-004	21.13	9.253E-004	
5.06	5.1	1.832E=UU4	20.89	9.252F-004	
5.16	5.2	1.723ê-uu4	20.09	8.875E-004	

5.26	5.3	1.75UE-UU4	20.44	9.187E-0U4
5.36	5.4	1.7u9E=004	2u.23	9.145E-004
5.40	5.5	1.6676-004	20.01	9.087E-004
5. 5t	5.6	1.585E-004	19.81	8.797E-504
5.64	5.7	1.59 UE - UU4	19.60	8.9855-004
5.70	5.8	1.554E-UU4	19.40	8.935E-004
5.86	5.9	1.497E-U04	19.21	8.76 UE-004
5.90	6 • u	1.4876-004	19.01	8.848E-004
6.06	6.1	1.456E-U04	18.82	8.8U7E-004
6.10	6.2	1.426E-U04	18.64	8.768E-004
6.20	6.3	1.397E=004	18.45	8.7326-004
6.30	6.4	1.310E=004	18.29	8.32UE-004
6.46	6.5	1.3u5E=U04	18,11	8.417E-004
6,50	6.6	1.3216=004	17.93	8.651E-004
6.60	6.7	1.2876-004	17.76	8.561E-004
6.76	6.8	1.275E-U04	17,59	8.603E-004
6.8t	6.9	1,2356-004	17,43	8.461E-004
6.96	7.0	1,2326-004	17.27	8.565E-004
7.00	7.1	1.2136-004	17,11	8.549E-004
7.16	7.2	1.1946-004	16.95	8.535E-QU4
1.20	7.3	1,176E-004	16.60	8,5236-004
7.30	7.4.	1.1566-004		8.498E-004
7.40	7.5	1,1126-004	16,51	0.2802-004
7.50	7.6	1.076E-004	16.37	8.123E-004
7.60	7.7	1.112E-004	16,21	6.507E-004
7.70	7.8	1.0986-004	16.47	8.5U7E-0U4

T .7500 GM/CM2

	7.86	7.9	1,0846-004	15,93	8.5096-004	
	7.90	8 . u	1.0566-004	15.79	8.3966-004	
	8.00	6.1	1.0596-004	15.65	8.521E-004	
	8	8.2	1.047E=004	15,52	8.5306-004	
	8.20	8.3	1.0356-004	15.38	8.5416-004	
	8.36	8.4	1.0246-004	15.25	8.554E-0U4	
	8.4	8,5	1.0036-004	15,12	8.479E-004	•
	8.56	8.6	Y. 1886-005	15,00	8.369E+004	
	8.60	8.7	9.956E-003	14.87	8.612E-004	
	8.70	8.8	9.868E=u15	14.75	8.6356-004	
	8.80	8.9	9.333t=005	14.64	8.260E-084	
	8.90	9.0	9.709E-005	14.50	8.69UE-0U4	
	9.00	9.1	9.635E-UU5	14.38	8.719E-004	• •
	9.16	9.2	9.5656-005	14,26	8,752E-004	
	9.20	9.3	9.499E-185	14.15	8.786E-004	
	9.30	9,4	9,437E-005	14.03	8.824F-004	•
	9.46	9.5	9.3796-005	13,92	8.864E-004	
-	9.50	9.6	9.309E-005	13.80	8.89UE-0U4	
	9.66	9.7	9.1516-005	13,69	8.831E-004	
	9.70	9.8	8.994E-U05	13.59	8.77uE-004	
	9.89	9,9.	9.1896-005	13,47	9.051F-004	
	9.96	10.0.	9.1506-005	13,36	9.104E-004	-
	10.00	10.1	9.115F-00 5	13.26	9.160E-004	
	16.10	10.2	8.654E-005	13.16	8.784E-004	
	16.20	10.3	9.0556-005	13.04	9.282F-004	
	16.36	10.4.	9.030E=0.5	12.94	9.3466-004	

T # .7500 GM/CM2.

-	16.40	10.5	8.9476-005	12.84	9.35UF-004	
	10.50	10.6	8.991E-005	12.73	9.485E-0U4	
	14.60	10.7	8.945E-005	12,63	9.527E-004	,
	16.76	10.8	/.685E-005	12,57	8.262E-004	
	14.80	14.9	4.464E-005	12,55	4.843E-004	
	16.90	11.0	4.6656-005	12,45	5.13UE-004	
	11.00	11.1.	4.679E+005	12.35	5.171E-004	
	11.10	11.2	4.220E-00\$	12.26	4.7u5E-004	
	11.20	11.3	2.3946-005	12.21	2.693E-004	
	11.30	11.4	2.0386-009	12.12	2.313E-004	
	11,40	11,50	1.0306-005	12.05	1.180E-0U4	
	11.50	11.6	1.6385-006	12.00	1.8926-005	

Т =	.7500 ^θ L (deg/) 10.00	GF/CM2. θu (deg.) 12.00	S _e (se/ie) 4.48(F-nue	
	12.00	14.00	1.795F-003	A STATE OF THE STA
	14.00	16.00	1.717E-ng3	
	16.00	18.00	1.7456-003	men dan series de semble de lan series de la semblation de dans des semblations de la companya d
	18.00	٥٠٠٠٥ م	1.8578-00%	
	20.00	55.00	1.984F-003	
	22.00	24.00	2.1586-003	. D. CAMBRION W. L. COMP. CO. Co. On Long State. I warrate additional construction in the Conference of Conference
	24.00	26.00	2.317F-nn3	
	26.00	24.00	2.545F-nn3	
* *	28.00	36.00	2.695E-nn3	1. 10 P. 10
	30.00	32.00	2.804F-nn3	
	32.00	34.00	2.737E-ng3	
	34.00	34.00	2.710F-003	to appropriate the company of the co
	36.00	38.00	2.481F-003	
	38.00	4 n . n u	2.311F-003	
	40.00	42.00 	2-171F-003	
	49.00	44.00	2.089F-003	
	44.00	44.nu	1.924F-003	
	46.00	44.00	1.765F=nn3	a contract the contract of the
	48.00	F1.08	1.700F-008	
	50. 00	52.00	1.495F-003	
	52.00	F4.00	1.433F-003	· whose the management appropriate the contract of the contrac
	54.00	54.00	1.3426-003	
	56.00	50.00	1.223F-003	
	58.00	* 1 • Q U	1.103F-003	and the second of the second o
	60.00	62.NU	1.0298-003	

.7500 GH/CM2.

62.00	64.00	6.890F-ng4	
64.00	FA-00	6.250F-nn4	
66.00	68.00	7.1615-004	
68.00	76 • 0 ü	6.426F-ng4	
 70.00	72.00	5.7406-004	
72.00	74.00	4.631E-NU4	
74.00	75.00	3.7086-004	-
76.nn	78.00	2.963F-004	••
78. 00	89.00	2.339F-004	
80.00	42.Au	4.785F-nn5	
8 % .00	F4.0U	2.3476-013	
84.00	86.00	1.266F-22H	

and the second s

و يو يو يو يو يو يو يو يو

The second secon

. 148

.....

APPENDIX C

600-KV X-RAY PROGRAM

This appendix contains the computer program and a sample printout for 600-kv X-rays from a pulsed X-ray source. The program was written for the CDC 1604 high-speed digital computer at AFSWC.

```
COMPON T. PT. RATIO
      DIMENSION 0(130), W(130), C(130), A0(130)
      CALL | THEON T=-1./.5762
      RATIDS4.
      CALL PRUH
      RATIOSPT
      CONST=0.30125
      ACC= . 5
      ACC1=1:-ACC
      ACCPM1:-ACC+.5
      ACCER.5/ACCE
      READ 5, TT
700
      IF (FOF) 44,701
701
      PHINT 1.TT
      RSTART +TT+ACC2
      DELHRI +TT +ACC
      XP97=010
      DO 60 (1=1.125
      0(3)=0:0
      010m(L)W
      AG (.)) = n .
60
      C(J)=0:0 - -
      K=0
      1×=0
      SUMF ##: 0
      SEL#0.0
      SEOP#010
      SUME BUL B ....
      BI USITMIP
      READ S, 61, F2, EN
      1/=1×+1
      IF (FOF) 28,5
      F=(F1+F2)+.5
      STIME = SHIME + FN .....
      A=E/.511
      A11=1.0+4
      A12=A11+A
      A1 3=A12+A
      A121 = LOGF (A12)
      61G=H.47896+(A11/A/A+(1.8+1.0/412-A12L/A1+A12)/(A+A)-A13/A12/A12/A12-
      SIGA#.44896+(2.+A11+A11/A/A/A12-A13/A12/A12-A11+(2.+A+(A-1.01-1.0)
     1/A/A/A12/A12-4.0+A+A/3.0/A12/A12/A12-(A14/A/A-0.5+0.5/A/A)/A+A12L)
      EHAHEF & SIGN/SIG
      1+ (+4AR-> . 4) 7.6.6
      RHAFE. TOT *FHAR-.0702
      RHAF=.2/1+(FBAR++(1.265-.0954+) UGF(ERAH)))
      SERLUNGTOSTG#EN
      DELFEBRUASI
      N=1
      HEHETART
      550 et . n
      5:1 = 0 . A
                                    151
```

```
EDP=0.0
                      £L≖p.0
                      AL = F/. K1 ( 984
                      COSTH=11.+AL)+SORTF(SIGA/(SIGA+AL+2.+SIGI/AL)
                      THET A= ACI SE (COSTH) +57.2957795
                      ALPHA=PHAR+.5762
                      IF(SE) 17,17.9
                      T=(H/ChSTH-RBAR)/ALPHA
     9
                      T1=T
                      CALL PRUF
                      PF=PT
                      TIO=FXPF(CONST+SIG+(P-TI))
                      SI =SF*PE*DFLR*TIO
                      SD=FF+11.-PE)+DELR+TIO
                      PXE= 5+PF
                      DFLX=1.
                      IF(SL-1.F-20) 10.10.11
                      RSTABLERSTART#ACC1- -
. 10
                      XPQ7=XPU7+DELRST
                      DELFEI-DELFST+ACC1
                      60 10 500
     1 1
                      T=T+DELX
                      CALL PROF
                      12
                      T=T-DELX
                      DELX#DFL>+.5
                      IF(1.E-n-DFLX) 11,11,13
     13
                      RLBAH=(T-T1)+ALPHA
                      IF (RLBAK-.77 ) 14,15,15
                      8=EYRF(().P65-SORTF().6-.3816++OGF(RLBAR/.273))/.1988) ---
     14
                      GO TO 16
                      B= (RI HAF+.0702)/.351
     15
     16
                      XQ=51.*P
                      J=X1NTF(++10.)+1
                      0(J)#Q(J)+1.
                      W(J)*W(J)+THETA . ....
                      C(J)#C(J)+9L
                      J=XINTF(THFTA+.5)+1
                      18+(L) UA=(L) OA
                      EL=FL+YU
                      FDP=FUP+SE+EBAR+DELR-XQ
                      SSL SSI SSL CONTROL CO
                      $$9#$$n+$D
                      R=R+ACC1
     500
                      DELROUPLH+ACC1
                      1F(k-5:4-4) 2000.2000.9
     200f
                      GG TO (2001.17) .N
     2001
                      N=2
                      R=R+ACC3
                      DELHORAD.
                      80 TO .
     17
                      SHAL OSIML+95L
                      XF DEST-XPQ7
                      SSD.FSD+XPO
                      EUP=FUP+XPO+EBAR
                      SUMDIOSHMU+950
                                                                                      152
```

- 14

		****	r in the state of the control of the
			SEDP*SEDP*EDP
			SEL=SEL+EL
			IF(1Y-24) 19,18,18
		18	PRINT 1.TT
		10	IX=0
		- •	- · ·
		4 9	NAME OF THE OWNER OWNER OF THE OWNER OWNE
			XXY=RUMU/SUME
			PRINT 7, F1, E2, EL, SEL, EDP, SEDP, SSL, XXX, 380, XXY
			GO TO 4
		20	CONTINUE
			PRINT 1.TT
	WAY - A - 1 WARM - 18 1 - 1501		- B0 48 5=5,130
			IF(n(J)) 43,43,39
		59	K=K+1
			FJ#J#1
			X=FJ/1h
			VmV. 4
			- Xx=(x+102)+G(f)
	. 41		
		*0	Z=W(J)/4(J) PRINT 500,X,Y,C(J),7.XX
		*1	PRINI SUMMER AND ADDRESS OF THE STATE OF THE
			IF (XMOnF (K, 25)) 43.42.43
		42	PRINT +:1T
		43	CONTINUE
		· · · · · · · · · · · · · · · · · · ·	·· Ks0
			PRINT 1.TT
			DO SO SEEL SO
			IF (AD(:)) 50.50.51
		\$ 1	K=K+1
		71	X= J+5
			~
			PRINT 550,7,X,A0(J) 1F(k=25) 50,50,50
		• 6	
		52	K=0
		_	PRINT 1:1T
•		\$ 0	CONTINUE
	ATT		- 60 - T.A. 700
		44	CONTINUE
			CALL TYMEOFF
		500	FORMAT(10X,2F10.3,E13.3,F11.2,F13.3/)
		550	FORMAT(10X,2F10.2,E43.3/)
		600	FORMAT(1H1)
			FORMAT(1H1, 8X3HT4-F7, 3///)
	***************************************	2	FORMAT(2F8.3,8F12.3/)
		•	
		5	. Out - 15 . 2 . 0 . 10 . 10
			END
			SUBFOUTINE PROB
			COMMON T,PT,RATIO
			AJP M (1)
			STA XX
			I AC C2
			STA SIGN
			LDA XX
			The Mark the most of the same and the same a
			I IIA C2
		(1)	
		117	STA SIGN 153

·				_	•
		į ≜C		T	
		S'TA		XX	
	(4)	FMU		XX	
		FTA		X2	•
		LDA		XX	
		88		ĝŝ	
EMMORPH EMPTOR EMPTOR	,				
		AUP	M	(5)	
		1 DA		C5	
		FNV		X2	
		STA		X22	
		FMU		C4	
		. FBH .	. ,	Č5	
		FMU		C6	
		-			
		FHU		X55	-
		FAD		C5	
		FHU		C7	,
		FMU		X22	
		- 168		ĉ5	
		FMU		C8	
		FMU		X55	
		FAD		C5	
		FMU		C9	
		FMU		X22	
the second secon		FRA .		C5	
		FMU		X25	
		FAD		C5	** **
		STA		ERF	
		+ AC		X2	
		STA		X2	
		FNA .		X2 -	and the section for the page and a real or the section of the sect
		LTA		EXPF	
		PTJ		FRROF	.
	· ·				•
	•	FMU		C10	
		FDV		XX	· · · · · · · · · · · · · · · · · · ·
		FHU		ERF	
		FAD		C5	
		SLJ		(3)	
	(8)	I AC		X2	
	16.7	FDV		Ď1	
		FAD		D5	
•		FMU		X5	
		F D 4	*·· ·	· 93 ·	
		FSB		D4	
		FHU .		D5	 ,
		FMU		X2	
		FAD		D6	
		FMU		X2	
AND THE PRODUCT OF STREET		FMU.	•	.p7	index as one should be a supplement which the different supplement as
		FSB		D8	
		FMU		X5	•
		FAD		D9	
		FHU		C5	
		-			
		FMU		X5	
to to a refuser	· · · · · ·	• • • • • • • • • • • • • • • • • • • •	*	C5	the section of the se
		FMU		X5	
		FDV		C9	
	154			- ·	

```
FAU
                    C5
         FMI
                    ΧX
         FMU
                    D1 0
(3)
         FMH
                    SIGN
         FAD
                    C2
         FOV
                    RATIO
         STA
                    PT
      RE TURN
         TEC
                    . 5
F?
                    1 . 647716
         DEC
63
         DEC
F.4
                    11.
         PFC
65
                    1.
76
         DEC
                    9.
         DEC
67
                    7.
         TEC
CB
                    5.
29
         PFC
                    3.
         TIEC
610
                    -.5641896
B1
         DEC
         DEC
                    .076923n8
n2
P3
         DEC
                    6.
                    .090909091
D4
         DEC
กร
         PEC
                    . 2
         TFC
116
                    .11111111
                    .25
B7
         DEC
                    .142857143
118
         DEC
         DEC
n9
                    .6
                    1.1283792
         DEC
B10
         RSS
FIGN
         BSS
XX
#2
         FSS
         BSS
X55
         ess
FRF
         113
FXPF
                    EXPE
      FND
      SUBPOUTINE TIMEON
         FNA - -- - 00000--
                                         - CLEAR-ACCUMULATOR --- --
         FXF
                    000118
                                           TEST CHANNEL 1 FOR ACTIVE.
         STA
                                           CLEAR CLOCK CONTENTS TO ZERO.
                    00000
         FYF
+
                                           START CLOCK.
                    010008
      RETUEN
      SUBBOUTINE TIMEOFF ----
         KOP
                                           DUMMY STATFMENT.
                                           TEST CHANNEL 1 FOR ACTIVE. ---
STOP THE REAL-TIME CLOCK.
         FXF
                    000118
         FXF
                    020008
         LDA
                    00000
                                           CLOCK CONTENTS TO ACCUMULATOR.
         STA
                    KLOCK
                                           CLOCK PONTENTS TO *KLOCK*.
      TIME OF LOCK 1/3600.6 .........
      PRINT 1.TIME
      RETURN
      FORMAT(11H1RUN TIME =F9.2.9H MINUTES.//)
      END
         END
         END
```

1950.1 6.1898 5 0.1898-0.5 2.0708-003 2.0718-003 3.4918-004 1.7008-003 9.7718-003 3.9098-002 1900.95		4 1		(Note: Headings are the same as on page 122)					
.85;407E.34 2.086E-04 6.97E-03 3.197E-03 3.197E-03 3.276E-02 3.276E-02 1.072E-19 3.080E-02 1.052E-19 3.080E-02 3.276E-03 3.276E-02 1.072E-19 3.080E-02 1.072E-19 3.080E-02 3.080E-03 3.080E-02 3.080E-03 3.080E-02 3.080E-03 3.		1		2.370E-033	2.07.E-053	4.419E-034	1.706E-603	9.771E-003	3.9:9E-002
.5 1 1702E-14 3.808E-04 4.1308E-02 1.030E-03 1.335E-03 1.107E-03 1.107E-03 9.431E-12 .44. .44.				6. 97E-003	0.167E-033	1.1916-013	1,554E-003	3.278E-052	4.0536-002
.45; 1:063E-14 0:531E-0.4 1:295E-0.2 1:796E-0.3 1:023E-103 1:105E-0.1 1:250E-0.2 4:150E-0.2 1:090E-0.3 1:023E-0.3 1:105E-0.1 1:250E-0.2 5:386E-0.2 1:090E-0.3 1:023E-0.3 1:105E-0.1 1:350 0:970E- :5 7.745E-0.4 1:250E-0.2 5:386E-0.2 1:040E-0.3 1:023E-0.3 1:340E-0.1 1:350 0:970E- :5 7.745E-0.4 1:250E-0.2 5:386E-0.2 1:040E-0.3 7:042E-0.4 1:250E-0.1 1:250E-0.2 5:040E-0.3 7:042E-0.4 1:250E-0.1 1:250E-0.3 7:042E-0.4 1:250E-0.3 7:042E-0.4 1:250E-0.1 1:050E-0.3 7:042E-0.4 1:050E-0.1 1:050E		1.762E	3.8485-004	9.399E-033	1.752E-502	1.6166-003	1.353E-033	9.815E-6-2	4.196E-602
.40 13306 4 0706 5 7.7456 0 0 1.2556 0 0 1.4566 0 1.4566 0 1		Ì	9.521E-0.4	1.148E-0:2	2.9. E-002	1.7966-0.3	ŀ	8.411E-L 2	4.3486-002
.30 6.970E5 7.743E-014 1.20E-02 5.384E-02 1.410E-0.3 5.042E-0.4 1.526E-0.1 .30 7.216- 5 9.449E-0.4 1.04E-0.2 6.47.E-07 1.01E-0.3 7.042E-0.4 .20 21210E5 9.449E-0.4 8.411E-0.3 7.311E-0.2 6.02E-0.4 9.62E-0.4 .20 7.251E6 9.521E-0.4 8.756E-0.3 7.311E-0.2 2.00.E-0.4 9.739E-0.4 .10 7.251E6 9.521E-0.4 9.756E-0.3 9.23E-0.2 0.05 0.0 4.908E-0.4 1.04E-0.1 .10 0 0.535E-0.4 0.926E-0.4 8.285E-0.2 0.05 0.0 4.908E-0.4 0.00E 0.0 .05 1.0 0 0.535E-0 4 0.000 0.0 0.285E-002 0.000 0.908E-0.4 0.00E 0.0		.:3:0E-	í	1.259E-CC2	4.1566-002	1.6976-303	1.029E-:03	1.1056-0 1	4.509E-002
.3 (5.216- 5 0.2476-0.4 0.416-0.2 0.47.E-0.2 1.016-0.3 7.0426-0.4 1.526-0.1 .550 21240- 5 0.4026-0.4 0.426-0.4 0.426-0.1 .526-0.		8.976E-		1.228E-002	9.384E-002	1.4166-0.3	9.883E-334	1.3466-01	4.68 E-002
.250 27216E- 5 3.449E-C.4 8.411E-U33 7.311E-U22 6.U22E-C.4 0.623E-C.4 1.612E-UC1 .2.0 77251E- 6 6.521E-C.4 9.766E-O.3 7.891E-C.2 2.802E-C.4 9.799E-D04 1.656E-U.1 .1.0 E .: 3.535E-C.4 6.928E-C.3 8.216E-C.2076E-D.4 9.73E-D04 1.614E-D.1 .1.0 E .: 3.535E-C.4 6.928E-C.4 8.285E-C.2007E 0.0 4.903E-D04040E 0.0 .050 :: 0 E .: 3.535E-C 4 DE C.0 8.285E-C.2007E 0.0 4.903E-D04040E 0.0		F. 216-	9.247E-(.4	1.,86E-0u2	6.47.E-012	1.0016-503	1	1	1
-2.0 71291E0 6.521E-0.04 9.768E-0.3 7.891E-0.2 2.89.E-0.4 9.799E-0.04 1.656E-0.1 -150 .1264E- 0 8.539E-0.4 9.258E-0.3 8.236E-0.2 1.076E-0.4 9.171E-0.04 1.616E-0.1 -150 .10 E 0. 8.539E-0.4 4.928E-0.4 8.289E-0.2 1.076E-0.0 4.909E-0.4 1.00E-0.0	ĺ	2:216E-	9.449E-0.4	F. 411E-UJ3	7.311E-L.2	6. u02E-0.4	6.623E-284	1.6126-901	9.247E-502
.159 .:304E- 0 0.539E-074 3.252E-0u3 0.210E-002 1.076E-0u4 3.171E-014 1.040E-0.1 .1 C . C E .3 0.535E-0.4 0.920E-0u4 0.245E-02 .0u2E 0u0 4.908E-0u4 0.0u2E 0.3 .350 :30u E .: 0.535E-0 4 .0u0E 0u0 0.285E-0U2 .0u2E 0u0		7:2516-	8.521E-004	5.758E-0.3	7.891E-012	2.88 .E+0.4	1	1.656E-5-1	5.245E-002
.3 C E .3 8.535E-C.4 0.928E-004 8.285E-002 .000E 000 4.908E-004 8.285E-0.2 .050 3.0 E .C 8.535E-C 4 .0.0 E .00 8.285E-002 .000E 0.0		.:364E-	6.535E-J-4	3.252E-6.3	8.216E-002	1.076E-3.4	9.171E-304	1.6146-0_1	5.454E-302
59 :30 E C. 0.535E-C 4 .000 E GG 0.285E-GCZ .000E 000 4.905E-004 .00GE 0.3	**	w .	8.545E-0,4	4.926E-004	8.285E-302	000 Jane.	4.908E-004	8.263E-0.2	9.577E-002
		.3. FF		000 30 7.	6.285E+CC2	.000 36 000	4.939E-304		5.577E-002

(Note: Headings are the same as on page 124) 7. u26E=nu3 ----42,51 - 3,5136-004----. 1 • 00 3.083E-0u3 40.39 4.625F-004 5.834E-005 39.07 9.586E-006 .3 :

(Note: Headings are the same as on page 127)

T= .500

38.0n	40.00	1.632F-003		
40.06	42.nú	5.102E-003		
42.0n	44.nu	3 • 018E-0n3		•
44.00	46.00	3.956E-004		
			•	

BIBLIOGRAPHY

- Berthelot, A., Radiations and Matter, Leonard Hill (Books) Limited, London, 1958.
- Bouchard, G. H., Measurement of Bremsstrahlung Dose and Spectrum from a 600 KV Pulsed X-ray Generator Using Photographic Film, SCR-524, June 1962.
- Dwight, H. B., Mathematical Tables of Elementary and Some Higher Mathematical Functions, McGraw-Hill Book Co., New York, 1941.
- Evans, R. D., The Atomic Nucleus, McGraw-Hill Book Co., New York, 1955.
- Glasstone, S. and Edlund, E. C., <u>The Elements of Nuclear Reactor Theory</u>, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1952.
- Goldstein, H., <u>Fundamental Aspects of Reactor Shielding</u>, Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1959.
- Hughes, V. W. and Schultz, H. L. (ed), 1961 Methods of Experimental Physics: Atomic and Electron Physics (Vol. 4), Academic Press, New York, (Part B).
- Katz, L. and Penfold, A. S., Revs. Mod. Phys. 24: 28, 1952.
- Kinsman, S. (ed), Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, Cincinnati, Ohio, 1957.
- Lea, D. D., Actions of Radiations on Living Cells, Cambridge University Press, London, (Chap. 1), 1955.
- Maienschein, F. C., et al., <u>Gamma Rays Associated with Fission</u>, Second Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1958.
- Marshall, J. and Ward, A. G., Canadian Journal of Research, A15, 39, 1937.
- Poll, R. A. and van Lint, V. A. J., <u>Transient Radiation Effects in Pressure Transducers</u>, AFSWC TDR-62-63, Air Force Special Weapons Center, Kirtland Air Force Base, New Mexico, 1962.
- Rockwell, T., Reactor Shielding Design Manual, McGraw-Hill Book Co., New York, 1956.
- Rossi, B., High-Energy Particles, Prentice-Hall, Inc., New York, 1952.

Segre, E., Article by Ashkin, J. and Bethe, H., Experimental Nuclear Physics, Vol 1, (Part 2), John Wiley and Sons, Inc., New York, 1953.

Semat, Henry, <u>Introduction to Atomic and Nuclear Physics</u>. Rinehart and Company, Inc., New York, 1958.

Siegbahm, Kai, <u>Beta and Gamma-Ray Spectroscopy</u>, Interscience Publishers Inc., New York, 1955.

Wu, C-S and Yuan, L. C. L. (ed), <u>Methods of Experimental Physics</u>:
<u>Nuclear Physics</u> (Vol. 5, Part A, Sec. 1.1), Academic Press, New York, 1961.

TDR-63-50

DISTRIBUTION

No. cys	HEADQUARTERS USAF
1	Hq USAF (AFCOA), Wash 25, DC
1	Hq USAF (AFOCE, Lt/Col Bohannon), Wash 25, DC
1	Hq USAF (AFRDP), Wash 25, DC
1	Hq USAF (AFRNE-A, Maj Lowry), Wash 25, DC
1	Hq USAF (AFNIN), Wash 25, DC
1	USAF Directorate of Nuclear Safety (AFINS), Kirtland AFB, NM
1	AFOAR, Bldg T-D, Wash 25, DC
1	AFCRL, Hanscom Fld, Bedford, Mass
1	AFOSR, Bldg T-D, Wash 25, DC
1	ARL (RRLO), Wright-Patterson AFB, Ohio
	MAJOR AIR COMMANDS
1	AFSC (SCT), Andrews AFB, Wash 25, DC
	SAC, Offutt AFB, Nebr
1	(OA)
1	(OAWS)
	ADC (Ops Anlys), Ent AFB, Colorado Springs, Colo
1	(ADLPD)
1	(ADOOA)
1	AUL, Maxwell AFB, Ala
1	USAFIT (USAF Institute of Technology), Wright-Patterson AFB, Ohio
1	USAFA, United States Air Force Academy, Colo
	AFSC ORGANIZATIONS
1	FTD (Library), Wright-Patterson AFB, Ohio
2	ASD (ASAPRL), Wright-Patterson AFB, Ohio
1	RTD (RTN-W, Maj Munyon), Bolling AFB, Wash 25, DC
1	BSD (BSR6A), Norton AFB, Calif
1	SSD (SSTRS, Maj D. L. Evans), AF Unit Post Office, Los Angeles 45, Calif
1	ESD (ESAT), Hanscom Fld, Bedford, Mass

No. cys	
1	AF Msl Dev Cen (RRRT), Holloman AFB, NM
1	RADC (Document Library), Griffiss AFB, NY
	KIRTLAND AFB ORGANIZATIONS
	AFSWC, Kirtland AFB, NM
1	(SWEH).
1	(SWT)
	AFWL, Kirtland AFB, NM
25	(WLL)
1	(WLR)
1	(WLV)
2	(WLRPA, TSgt Sykes)
1	(WLRPT)
1	(WLRB)
	OTHER AIR FORCE AGENCIES
	Director, USAF Project RAND, via: Air Force Liaison Office, The RAND Corporation, 1700 Main Street, Santa Monica, Calif
1	(RAND Physics Div)
1	(RAND Library)
	ARMY ACTIVITIES
1	Chief of Research and Development, Department of the Army (Special Weapons and Air Defense Division), Wash 25, DC
1	US Army Materiel Command, Harry Diamond Laboratories, (ORDTL 06.33, Technical Library), Wash 25, DC
1	Redstone Scientific Information Center, US Army Missile Command (Tech Library), Redstone Arsenal, Ala
1	Commanding Officer, US Army Signal Research & Development Laboratory, (SIGRA/SL-SAT-1, Weapons Effects Section), Fort Monmouth, NJ
1	US Army Research Office, ATTN: Richard O. Ulsh, Box CM, Duke Station, Durham, NC
1	Commanding General, White Sands Missile Range, ATTN: Mr. Glenn Elder, White Sands, NM

No. cys	
	NAVY ACTIVITIES
	Chief of Naval Operations, Department of the Navy, Wash 25, DC
1	(OP-36)
1	(OP-75)
	Chief of Naval Research, Department of the Navy, Wash 25, DC
1	(Code 418)
1	(Code 427)
	Chief, Bureau of Naval Weapons, Department of the Navy, Wash 25, DC
1	(RMGA-8)
1	(RRNV)
1	Chief, Bureau of Ships (Code 362B), Department of the Navy, Wash 25, DC
1	Commanding Officer, Naval Research Laboratory, Wash 25, DC
1	Commanding Officer, Naval Radiological Defense Laboratory (Technical Info Div), San Francisco 24, Calif
1	Commanding Officer and Director, Navy Electronics Laboratory (Code 4223), San Diego 52, Calif
1	Commander, Naval Ordnance Laboratory, ATTN: Dr. Rudlin, White Oak, Silver Spring, Md
1	Office of Naval Research, Wash 25, DC
	OTHER DOD ACTIVITIES
1	Chief, Defense Atomic Support Agency (Document Library), Wash 25, DC
1	Commander, Field Command, Defense Atomic Support Agency (FCAG3, Special Weapons Publication Distribution), Sandia Base, NM
1	Director, Advanced Research Projects Agency, Department of Defense, ATTN: Col W. H. Innes, The Pentagon, Wash 25, DC
1	Director, Defense Research & Engineering, The Pentagon, Wash 25, DC
20	Hq Defense Documentation Center for Scientific and Technical Information (DDC), Cameron Stn, Alexandria, Va 22314

No. cys	AEC ACTIVITIES
1	US Atomic Energy Commission (Headquarters Library, Reports Section), Mail Station G-017, Wash 25, DC
	Sandia Corporation, Sandia Base, NM
1	(Dr. J. W. Easley, Dept 5300)
1	(Dr. Carter Broyles, Dept 5113)
1	(Dr. S. C. Rogers, Dept 5312)
1	(Dr. A. W. Snyder, Dept 5313)
1	Sandia Corporation (Technical Library), P. O. Box 969, Livermore, Calif
1	Chief, Division of Technical Information Extension, US Atomic Energy Commission, Box 62, Oak Ridge, Tenn
1	University of California Lawrence Radiation Laboratory (Technical Information Division), P.O. Box 808, Livermore, Calif
1	University of California Lawrence Radiation Laboratory, (Technical Info Div. ATTN: Dr. R. K. Wakerling), Berkeley 4, Calif
1	Director, Los Alamos Scientific Laboratory (Helen Redman, Report Library), P. O. Box 1663, Los Alamos, NM
1	Brookhaven National Laboratory, Upton, Long Island, NY
1	Argonne National Laboratory (Tech Library), Argonne, Ill
1	Oak Ridge National Laboratory (Tech Library), Oak Ridge, Tenn
	OTHER
1	National Bureau of Standards, Radiological Equipment Section, Wash 25, DC
1	OTS, Department of Commerce, Wash 25, DC
1	Institute for Defense Analysis, Room 2B257, The Pentagon, Wash 25, DC THRU: ARPA
1	Space Technology Labs, Inc., ATTN: Lt General James H. Doolittle, One Space Park, Redondo Beach, Calif
1	Battelle Memorial Institute, 505 King Ave., Columbus, Ohio
1	Institute of the Aerospace Sciences, Inc., 2 East 64th Street, New York 21, NY
1	Aerospace Corporation, P.O. Box 95085, Los Angeles 45, Calif

No. cys	and a state of states (come a)
1	General Electric Company - MSD, ATTN: Dr. Sumner Stern, P.O. Box 8555, Philadelphia 1, Pa
1	General Atomic, ATTN: Dr. R. J. Jurgovan, P.O. Box 608, San Diego 12, Calif
2	General Atomic, ATTN: Dr. Victor A. J. van Lint, P.O. Box 608, San Diego 12, Calif
1	IBM, Federal Systems Division, ATTN: W. A. Bohan, Owego, NY
3	The Boeing Co., Aero-Space Division, ATTN: Dr. G. L. Keister, Org. 2-5470, P. O. Box 3707, Seattle 24, Wash
1	General Dynamics/Fort Worth, ATTN: W. B. Rose, Fort Worth, Tex
3	Hughes Aircraft Co., Ground Systems Group, ATTN: Mr. J.E. Bell, P.O. Box 2097, Fullerton, Calif
1	Radiation Effects Information Center, ATTN: E. N. Wyler, 505 King Avenue, Columbus 1, Ohio
1	DASA Data Center, General Electric TEMPO, 735 State Street, Santa Barbara, Calif
1	Director, Applied Physics Laboratory, Johns Hopkins University, ATTN: Mr. Robert Frieberg, 8621 Georgia Avenue, Silver Spring, Md
1	Massachusetts Institute of Technology, Lincoln Laboratory, ATTN: O. V. Fortier, P. O. Box 73, Lexington, Mass
	Northrop Ventura Division, Northrop Corp., 1515 Rancho Conejo Blvd, Newbury Park, Calif
1	(Dr. T. M. Hallman)
1	(Don Glenn)
1	Lockheed Aircraft Corp., Missile & Space Division, ATTN: Mr. Fred Barline, Dept 5872, 1111 Lockheed Way, Sunnyvale, Calif
1	Space Technology Laboratories, ATTN: Dr. B. Sussholz and Mr. J. Maxey, 5730 Arbor Vitae St., Los Angeles, Calif
1	Atomics International, ATTN: W. E. Parkins, Mgr Research, 8900 DeSoto St., Canoga Park, Calif
1	General Electric Company, Radiation Effects Operations, Defense Systems Dept., ATTN: Mr. L. Dee, 300 South Geddes Street, Syracuse, NY
1	Official Record Copy (WLRPT, Lt Sawyer)